SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "((WAKA:ref) pers:(Gustafsson Hans Åke) pers:(Stenlund Evert) spr:eng) "

Search: ((WAKA:ref) pers:(Gustafsson Hans Åke) pers:(Stenlund Evert) spr:eng)

  • Result 1-25 of 329
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • A, Lebedev, et al. (author)
  • Direct photons in WA98.
  • 2002
  • In: Nuclear Physics A. ; 698, s. 135-135
  • Journal article (peer-reviewed)
  •  
2.
  • Aamodt, K., et al. (author)
  • Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
  • 2010
  • In: Journal of Instrumentation. - 1748-0221. ; 5
  • Conference paper (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 mu m in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10(5) charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
  •  
3.
  • Aamodt, K., et al. (author)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=0.9 and 2.36 TeV with ALICE at LHC
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:1-2, s. 89-108
  • Journal article (peer-reviewed)abstract
    • Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.4. In the central region (vertical bar eta vertical bar < 0.5), at 0.9 TeV, we measure charged-particle pseudo-rapidity density dN(ch)/d eta = 3.02 +/- 0.01(stat.)(-0.05)(+0.08)(syst.) for inelastic interactions, and dN(ch)/d eta = 3.58 +/- 0.01 (stat.)(-0.12)(+0.12)(syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dN(ch)/d eta = 3.77 +/- 0.01(stat.)(-0.12)(+0.25)(syst.) for inelastic, and dN(ch)/d eta = 4.43 +/- 0.01(stat.)(-0.12)(+0.17)(syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +/- 0.5%(stat.)(-2.8)(+5.7)%(syst.) for inelastic and 23.7% +/- 0.5%(stat.)(-1.1)(+4.6)%(syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.
  •  
4.
  • Aamodt, K., et al. (author)
  • Charged-particle multiplicity measurement in proton-proton collisions at root s=7 TeV with ALICE at LHC
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 68:3-4, s. 345-354
  • Journal article (peer-reviewed)abstract
    • The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy root s = 7 TeV, were measured in the central pseudorapidity region vertical bar eta vertical bar < 1. Comparisons are made with previous measurements at root s = 0.9 TeV and 2.36 TeV. At root s = 7 TeV, for events with at least one charged particle in |eta vertical bar| < 1, we obtain dN(ch)/d eta = 6.01 +/- 0.01(stat.)(-0.12)(+0.20) (syst.). This corresponds to an increase of 57.6%+/-0.4%(stat.)(-1.8%)(+3.6) (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.
  •  
5.
  • Aamodt, K., et al. (author)
  • First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at root s=900 GeV
  • 2010
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 65:1-2, s. 111-125
  • Journal article (peer-reviewed)abstract
    • On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range vertical bar eta vertical bar < 0.5, we obtain dN(ch)/d eta = 3.10 +/- 0.13(stat.) +/- 0.22(syst.) for all inelastic interactions, and dN(ch)/d eta = 3.51 +/- 0.15(stat.) +/- 0.25(syst.) for nonsingle diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp<(p)over bar>S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.
  •  
6.
  • Aamodt, K., et al. (author)
  • Midrapidity Antiproton-to-Proton Ratio in pp Collisons root s=0.9 and 7 TeV Measured by the ALICE Experiment
  • 2010
  • In: Physical Review Letters. - 1079-7114. ; 105:7
  • Journal article (peer-reviewed)abstract
    • The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.
  •  
7.
  • Aamodt, K., et al. (author)
  • Production of pions, kaons and protons in pp collisions at root s=900 GeV with ALICE at the LHC
  • 2011
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 71:6
  • Journal article (peer-reviewed)abstract
    • The production of pi(+), pi(-), K+, K-, p, and (p) over bar at mid-rapidity has been measured in proton-proton collisions at root s = 900 GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum (p(t)) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from p(t) = 100 MeV/c to 2.5 GeV/c. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean pt are compared with previous measurements, and the trends as a function of collision energy are discussed.
  •  
8.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
9.
  • Aamodt, K., et al. (author)
  • Transverse momentum spectra of charged particles in proton-proton collisions at root s=900 GeV with ALICE at the LHC
  • 2010
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 693:2, s. 53-68
  • Journal article (peer-reviewed)abstract
    • The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at root s = 900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (vertical bar eta vertical bar < 0.8) over the transverse momentum range 0.15 < p(T) < 10 GeV/c. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for vertical bar eta vertical bar < 0.8 is < p(T)>(INEL) = 0.483 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c and < p(T)>(NSD) = 0.489 +/- 0.001 (stat.) +/- 0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger < p(T)> than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET. (C) 2010 Published by Elsevier B.V.
  •  
10.
  • Aamodt, K., et al. (author)
  • Two-pion Bose-Einstein correlations in pp collisions at root s=900 GeV
  • 2010
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 82:5
  • Journal article (peer-reviewed)abstract
    • We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.
  •  
11.
  • Acharya, U., et al. (author)
  • Measurement of jet-medium interactions via direct photon-hadron correlations in Au+Au and d+Au collisions at sNN =200 GeV
  • 2020
  • In: Physical Review C. - 2469-9985. ; 102:5
  • Journal article (peer-reviewed)abstract
    • We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5-12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.
  •  
12.
  • Adare, A, et al. (author)
  • Azimuthal-Angle Dependence of Charged-Pion-Interferometry Measurements with Respect to Second- and Third-Order Event Planes in Au+Au Collisions at sqrt[s_{NN}]=200 GeV.
  • 2014
  • In: Physical Review Letters. - 1079-7114. ; 112:22
  • Journal article (peer-reviewed)abstract
    • Charged-pion-interferometry measurements were made with respect to the second- and third-order event plane for Au+Au collisions at sqrt[s_{NN}]=200 GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the second- and third-order event planes. The results for the second-order dependence indicate that the initial eccentricity is reduced during the medium evolution, which is consistent with previous results. In contrast, the results for the third-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the third-order oscillations are largely dominated by the dynamical effects from triangular flow.
  •  
13.
  • Adare, A., et al. (author)
  • Azimuthal anisotropy of pi(0) and eta mesons in Au plus Au collisions at root s(NN)=200 GeV
  • 2013
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 88:6
  • Journal article (peer-reviewed)abstract
    • The azimuthal anisotropy coefficients v2 and v4 of p 0 and. mesons are measured in Au + Au collisions at root s(NN) = 200 GeV as a function of transverse momentum p(T) (1-14 GeV/c) and centrality. The extracted v(2) coefficients are found to be consistent between the two meson species over the measured p(T) range. The ratio of v(4)/v(2)(2) for pi(0) mesons is found to be independent of p(T) for 1- 9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p(T). Furthermore, the ratio of v(4)/v(2)(2) is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.
  •  
14.
  • Adare, A., et al. (author)
  • Azimuthal Anisotropy of pi(0) Production in Au plus Au Collisions at root s(NN)=200 GeV: Path-Length Dependence of Jet Quenching and the Role of Initial Geometry
  • 2010
  • In: Physical Review Letters. - 1079-7114. ; 105:14
  • Journal article (peer-reviewed)abstract
    • We have measured the azimuthal anisotropy of pi(0) production for 1 < p(T) < 18 GeV/c for Au + Au collisions at root s(NN) = 200 GeV. The observed anisotropy shows a gradual decrease for 3 less than or similar to p(T) less than or similar to 7-10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is underpredicted, up to at least similar to 10 GeV/c, by current perturbative QCD (PQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and fluctuations is insufficient to account for this discrepancy. Calculations that implement a path-length dependence steeper than what is implied by current PQCD energy-loss models show reasonable agreement with the data.
  •  
15.
  • Adare, A., et al. (author)
  • Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p plus p and Au plus Au collisions at root s(NN)=200 GeV
  • 2011
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 83:4
  • Journal article (peer-reviewed)abstract
    • Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled p+p collisions. These measurements indicate that charm and bottom quarks interact with the hot dense matter produced in heavy-ion collisions much more than expected. Here we extend these studies to two-particle correlations where one particle is an electron from the decay of a heavy-flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interactions between heavy quarks and the matter, such as whether the modification of the away-side-jet shape seen in hadron-hadron correlations is present when the trigger particle is from heavy-meson decay and whether the overall level of away-side-jet suppression is consistent. We statistically subtract correlations of electrons arising from background sources from the inclusive electron-hadron correlations and obtain two-particle azimuthal correlations at root s(NN) = 200 GeV between electrons from heavy-flavor decay with charged hadrons in p+p and also first results in Au+Au collisions. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to p+p collisions.
  •  
16.
  • Adare, A., et al. (author)
  • Azimuthally anisotropic emission of low-momentum direct photons in Au + Au collisions at sNN =200 GeV
  • 2016
  • In: Physical Review C: covering nuclear physics. - 2469-9985. ; 94:6
  • Journal article (peer-reviewed)abstract
    • The PHENIX experiment at the BNL Relativistic Heavy Ion Collider has measured second- and third-order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au+Au collisions at sNN=200 GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of 0.4
  •  
17.
  • Adare, A., et al. (author)
  • Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions
  • 2019
  • In: Physical Review Letters. - 1079-7114. ; 123:2
  • Journal article (peer-reviewed)abstract
    • The PHENIX collaboration presents first measurements of low-momentum (0.41 GeV/c) direct-photon yield dNγdir/dη is a smooth function of dNch/dη and can be well described as proportional to (dNch/dη)α with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different A+A collision systems. At a given beam energy, the scaling also holds for high pT (>5 GeV/c), but when results from different collision energies are compared, an additional sNN-dependent multiplicative factor is needed to describe the integrated-direct-photon yield. © 2019 authors. Published by the American Physical Society.
  •  
18.
  • Adare, A., et al. (author)
  • Centrality categorization Rp(d)+A in high-energy collisions
  • 2014
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 90:3
  • Journal article (peer-reviewed)abstract
    • High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d) + A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainties in this procedure. For d + Au collisions at root s(NN) = 200 GeV we find that the connection to geometry is confirmed by measuring the fraction of events in which a neutron from the deuteron does not interact with the nucleus. As an application, we consider the nuclear modification factors Rp(d)+A, for which there is a bias in the measured centrality-dependent yields owing to auto correlations between the process of interest and the backward-rapidity multiplicity. We determine the bias-correction factors within this framework. This method is further tested using the HIJING Monte Carlo generator. We find that for d + Au collisions at root s(NN) = 200 GeV, these bias corrections are small and vary by less than 5% (10%) up to p(T) = 10 (20) GeV/c. In contrast, for p + Pb collisions at v root s(NN) = 5.02 TeV we find that these bias factors are an order of magnitude larger and strongly pT dependent, likely attributable to the larger effect of multiparton interactions.
  •  
19.
  • Adare, A., et al. (author)
  • Centrality dependence of low-momentum direct-photon production in Au plus Au collisions at root s(NN)=200 GeV
  • 2015
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 91:6
  • Journal article (peer-reviewed)abstract
    • The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au + Au collisions at root s(NN) = 200 GeV down to pT = 0.4 GeV/c. Photons are detected via photon conversions to e(+)e(-) pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low pT. We find an excess of direct photons above the N-coll-scaled yield measured in p + p collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/c in the pT range 0.6-2.0 GeV/c. While the shape of the pT distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with N-part(alpha), where alpha = 1.38 +/- 0.03(stat) +/- 0.07(syst).
  •  
20.
  • Adare, A., et al. (author)
  • Charged hadron multiplicity fluctuations in Au plus Au and Cu plus Cu collisions from s(NN)=22.5 to 200 GeV
  • 2008
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 78:4
  • Journal article (peer-reviewed)abstract
    • A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at s(NN)=62.4 and 200 GeV, and Cu+Cu collisions at s(NN)=22.5,62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for nondynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. A comparison of the data with a model where hadrons are independently emitted from a number of hadron clusters suggests that the mean number of hadrons per cluster is small in heavy ion collisions.
  •  
21.
  • Adare, A., et al. (author)
  • Charged-pion cross sections and double-helicity asymmetries in polarized p plus p collisions at root s=200 GeV
  • 2015
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 91:3
  • Journal article (peer-reviewed)abstract
    • We present midrapidity charged-pion invariant cross sections, the ratio of the pi(-) to pi(+) cross sections and the charge-separated double-spin asymmetries in polarized p + p collisions at root s = p + 200 GeV. While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of similar to 0.03-0.16 and provide unique information on the sign of the gluon-helicity distribution.
  •  
22.
  • Adare, A., et al. (author)
  • Cold-Nuclear-Matter Effects on Heavy-Quark Production at Forward and Backward Rapidity in d + Au Collisions at root s(NN) = GeV
  • 2014
  • In: Physical Review Letters. - 1079-7114. ; 112:25
  • Journal article (peer-reviewed)abstract
    • The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6 GeV/c at forward and backward rapidity (1.4 < vertical bar y vertical bar < 2.0) in d + Au and p + p collisions at root s(NN) = 200 GeV. In central d + Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.
  •  
23.
  • Adare, A., et al. (author)
  • Cold-Nuclear-Matter Effects on Heavy-Quark Production in d+Au Collisions at root S-NN=200 GeV
  • 2012
  • In: Physical Review Letters. - 1079-7114. ; 109:24
  • Journal article (peer-reviewed)abstract
    • The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d + Au and p + p collisions at root S-NN = 200 GeV in the transverse-momentum range 0.85 <= p(T)(e) <= 8.5 GeV/c. In central d + Au collisions, the nuclear modification factor R-dA at 1.5 < p(T) < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p + p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi(0) and heavy-flavor-electron nuclear modification factors R-AA. DOI: 10.1103/PhysRevLett.109.242301
  •  
24.
  • Adare, A., et al. (author)
  • Cold nuclear matter effects on J/psi production as constrained by deuteron-gold measurements at root S-NN=200 GeV
  • 2008
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 77:2, s. 15-024912
  • Journal article (peer-reviewed)abstract
    • We present a new analysis of J/psi production yields in deuteron-gold collisions at root s(NN) =200 GeV using data taken from the PHENIX experiment in 2003 and previously published in S. S. Adler [Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 are used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors (R-dAu). A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial-state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) breakup cross section is added. Breakup cross sections of sigma(breakup)=2.8(-1.4)(+1.7) (2.2(-1.5)(+1.6)) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross-section values are consistent within large uncertainties with the 4.2 +/- 0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect.
  •  
25.
  • Adare, A., et al. (author)
  • Cold Nuclear Matter Effects on J/psi Yields as a Function of Rapidity and Nuclear Geometry in d plus A Collisions at root S-NN=200 GeV
  • 2011
  • In: Physical Review Letters. - 1079-7114. ; 107:14
  • Journal article (peer-reviewed)abstract
    • We present measurements of J/psi yields in d + Au collisions at root S-NN = 200 GeV recorded by the PHENIX experiment and compare them with yields in p + p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponential in the density weighted longitudinal thickness, such as those from the final state breakup of the bound state.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-25 of 329
Type of publication
journal article (323)
conference paper (3)
research review (3)
Type of content
peer-reviewed (329)
Author/Editor
Gustafsson, Hans-Åke (329)
Stenlund, Evert (329)
Oskarsson, Anders (326)
Otterlund, Ingvar (229)
Rosendahl, Sarah (204)
Tydesjö, Henrik (185)
show more...
Haslum, Eva (174)
Nystrand, Joakim (172)
Miake, Y. (151)
Reygers, K. (151)
Buesching, H. (148)
Bathe, S. (144)
Lebedev, A. (143)
Chujo, T. (143)
Hamagaki, H. (143)
Rak, J. (143)
Kwon, Y. (142)
Sugitate, T. (142)
Glenn, A. (141)
Samsonov, V. (141)
Shigaki, K. (141)
Torii, H. (141)
Khanzadeev, A. (140)
Esumi, S. (140)
Akiba, Y. (140)
Silvermyr, David (139)
Newby, J. (138)
Milov, A. (136)
Alexander, J (136)
Jia, J. (135)
Averbeck, R. (135)
Drees, A (135)
Franz, A (135)
Bazilevsky, A (134)
David, G (134)
Denisov, A (134)
Ozawa, K. (133)
Tanaka, Y. (133)
Hong, B (133)
Watanabe, Y. (133)
Bumazhnov, V. (133)
Chiu, M (133)
Bassalleck, B (133)
Butsyk, S (133)
Cianciolo, V (133)
Deshpande, A (133)
Dietzsch, O (133)
Durum, A (133)
Goto, Y (133)
He, X (133)
show less...
University
Lund University (329)
Language
English (329)
Research subject (UKÄ/SCB)
Natural sciences (329)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view