SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:du-41194"
 

Search: onr:"swepub:oai:DiVA.org:du-41194" > Deep Learning Appro...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Deep Learning Approach for Assessing Air Quality During COVID-19 Lockdown in Quito

Ngoc Phuong, Chau (author)
Högskolan Dalarna,Mikrodataanalys
Zalakeviciute, Rasa (author)
Grupo de Biodiversidad Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
Thomas, Ilias (author)
Högskolan Dalarna,Mikrodataanalys
show more...
Rybarczyk, Yves (author)
Högskolan Dalarna,Mikrodataanalys
show less...
 (creator_code:org_t)
2022-04-04
2022
English.
In: Frontiers in Big Data. - : Frontiers Media SA. - 2624-909X. ; 5
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Weather Normalized Models (WNMs) are modeling methods used for assessing air contaminants under a business-as-usual (BAU) assumption. Therefore, WNMs are used to assess the impact of many events on urban pollution. Recently, different approaches have been implemented to develop WNMs and quantify the lockdown effects of COVID-19 on air quality, including Machine Learning (ML). However, more advanced methods, such as Deep Learning (DL), have never been applied for developing WNMs. In this study, we proposed WNMs based on DL algorithms, aiming to test five DL architectures and compare their performances to a recent ML approach, namely Gradient Boosting Machine (GBM). The concentrations of five air pollutants (CO, NO2, PM2.5, SO2, and O3) are studied in the city of Quito, Ecuador. The results show that Long-Short Term Memory (LSTM) and Bidirectional Recurrent Neural Network (BiRNN) outperform the other algorithms and, consequently, are recommended as appropriate WNMs to quantify the effects of the lockdowns on air pollution. Furthermore, examining the variable importance in the LSTM and BiRNN models, we identify that the most relevant temporal and meteorological features for predicting air quality are Hours (time of day), Index (1 is the first collected data and increases by one after each instance), Julian Day (day of the year), Relative Humidity, Wind Speed, and Solar Radiation. During the full lockdown, the concentration of most pollutants has decreased drastically: −48.75%, for CO, −45.76%, for SO2, −42.17%, for PM2.5, and −63.98%, for NO2. The reduction of this latter gas has induced an increase of O3 by +26.54%.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Keyword

air pollution
machine learning
deep learning - artificial neural network (DL-ANN)
data-driven modeling and optimization
COVID-19

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ngoc Phuong, Cha ...
Zalakeviciute, R ...
Thomas, Ilias
Rybarczyk, Yves
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Computer Science ...
Articles in the publication
Frontiers in Big ...
By the university
Högskolan Dalarna

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view