SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:hh-26616"
 

Search: onr:"swepub:oai:DiVA.org:hh-26616" > Altered content of ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects

Kostovski, Emil (author)
Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway & University of Oslo, Oslo, Norway
Boon, Hanneke, 1981- (author)
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Hjeltnes, Nils (author)
Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
show more...
Lundell, Leonidas S. (author)
Departments of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
Ahlsén, Maria (author)
Departments of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
Chibalin, Alexander V. (author)
Karolinska Institutet
Krook, Anna (author)
Karolinska Institutet
Iversen, Per Ole (author)
Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway & Department of Hematology, Oslo University Hospital, Oslo, Norway
Widegren, Ulrika (author)
Karolinska Institutet
show less...
 (creator_code:org_t)
Bethesda, MD : American Physiological Society, 2013
2013
English.
In: American Journal of Physiology. Endocrinology and Metabolism. - Bethesda, MD : American Physiological Society. - 0193-1849 .- 1522-1555. ; 305:9, s. E1071-E1080
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal cord injury represents an extreme form of physical inactivity, with concomitant changes in skeletal muscle metabolism. We assessed the influence of longstanding and recent spinal cord injury on protein abundance of AMPK isoforms in human skeletal muscle. We also determined muscle fiber type as a marker of glycolytic or oxidative metabolism. In subjects with longstanding complete injury, protein abundance of the AMPKγ3 subunit, as well as myosin heavy chain (MHC) IIa and IIx, were increased, whereas abundance of the AMPKγ1 subunit and MHC I were decreased. Similarly, abundance of AMPKγ3 and MHC IIa proteins were increased, whereas AMPKα2, -β1, and -γ1 subunits and MHC I abundance was decreased during the first year following injury, reflecting a more glycolytic phenotype of the skeletal muscle. However, in incomplete cervical lesions, partial recovery of muscle function attenuated the changes in the isoform profile of AMPK and MHC. Furthermore, exercise training (electrically stimulated leg cycling) partly normalized mRNA expression of AMPK isoforms. Thus, physical activity affects the relative expression of AMPK isoforms. In conclusion, skeletal muscle abundance of AMPK isoforms is related to physical activity and/or muscle fiber type. Thus, physical/neuromuscular activity is an important determinant of isoform abundance of AMPK and MCH. This further underscores the need for physical activity as part of a treatment regimen after spinal cord injury to maintain skeletal muscle metabolism. © 2013 the American Physiological Society.

Keyword

physical inactivity
muscle
metabolism
spinal cord injury

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view