SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:hh-51416"
 

Search: onr:"swepub:oai:DiVA.org:hh-51416" > Predicting state of...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Predicting state of health and end of life for batteries in hybrid energy buses

Altarabichi, Mohammed Ghaith, 1981- (author)
Högskolan i Halmstad,Akademin för informationsteknologi
Fan, Yuantao, 1989- (author)
Högskolan i Halmstad,Akademin för informationsteknologi
Pashami, Sepideh, 1985- (author)
Högskolan i Halmstad,Akademin för informationsteknologi
show more...
Nowaczyk, Sławomir, 1978- (author)
Högskolan i Halmstad,Centrum för forskning om tillämpade intelligenta system (CAISR)
Rögnvaldsson, Thorsteinn, 1963- (author)
Högskolan i Halmstad,Akademin för informationsteknologi
show less...
 (creator_code:org_t)
Singapore : Research Publishing Services, 2020
2020
English.
In: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference. - Singapore : Research Publishing Services. - 9789811485930 ; , s. 1231-1231
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • There is a major ongoing transition from utilizing fossil fuel to electricity in buses for enabling a more sustainable, environmentally friendly, and connected transportation ecosystem. Batteries are expensive, up to 30% of the total cost for the vehicle (A. Fotouhi 2016), and considered safety-critical components for electric vehicles (EV). As they deteriorate over time, monitoring the health status and performing the maintenance accordingly in a proactive manner is crucial to achieving not only a safe and sustainable transportation system but also a cost-effective operation and thus a greater market satisfaction. As a widely used indicator, the State of Health (SOH) is a measurement that reflects the current capability of the battery in comparison to an ideal condition. Accurate estimation of SOH is important to evaluate the validity of the batteries for the intended application and can be utilized as a proxy to estimate the remaining useful life (RUL) and predict the end-of-life (EOL) of batteries for maintenance planning. The SOH is computed via an on-board computing device, i.e. battery management unit (BMU), which is commonly developed based on controlled experiments and many of them are physical-model based approaches that only depend on the internal parameters of the battery (B. Pattipati 2008; M. H. Lipu 2018). However, the deterioration processes of batteries in hybrid and full-electric buses depend not only on the designing parameters but also on the operating environment and usage patterns of the vehicle. Therefore, utilizing multiple data sources to estimate the health status and EOL of the batteries is of potential internet. In this study, a data-driven prognostic method is developed to estimate SOH and predict EOL for batteries in heterogeneous fleets of hybrid buses, using various types of data sources, e.g. physical configuration of the vehicle, deployment information, on-board sensor readings, and diagnostic fault codes. A set of new features was generated from the existing sensor readings by inducing artificial resets on each battery replacement. A neural network-based regression model achieved accurate estimates of battery SOH status. Another network was used to indicate the EOL of batteries and the result was evaluated using battery replacement based on the current maintenance strategy. © ESREL2020-PSAM15 Organizers. Published by Research Publishing, Singapore.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Annan samhällsbyggnadsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Other Civil Engineering (hsv//eng)

Keyword

Electric vehicles
Lithium-ion Battery
Predictive Maintenance. References
Remaining Useful Life Prediction
State of Health Estimation

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view