SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:hig-23952"
 

Search: onr:"swepub:oai:DiVA.org:hig-23952" > Bias and Precision ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Bias and Precision in Biomechanical Exposure Assessment : Making the Most of our Methods

Jackson, Jennie (author)
Högskolan i Gävle,Arbetshälsovetenskap,Centrum för belastningsskadeforskning,Uppsala universitet,Institutionen för medicinska vetenskaper,Högskolan i Gävle, Avdelningen för arbets- och folkhälsovetenskap
Mathiassen, Svend Erik (thesis advisor)
Uppsala universitet,Högskolan i Gävle,Centrum för belastningsskadeforskning,Arbetshälsovetenskap,Institutionen för medicinska vetenskaper,Högskolan i Gävle, Avdelningen för arbets- och folkhälsovetenskap
Vingård, Eva (thesis advisor)
Uppsala universitet
show more...
Forsman, Mikael (thesis advisor)
Karolinska Institutet
Johnson, Peter, professor (opponent)
University of Washington
show less...
 (creator_code:org_t)
ISBN 9789155499020
Uppsala : Acta Universitatis Upsaliensis, 2017
English 90 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Background: Insufficient exposure assessment is a suggested contributing factor to the current lack of clearly characterised relationships between occupational biomechanical risk factors and musculoskeletal disorders. Minimal attention has been paid to the potential bias of measurement tools from expected true values (i.e. accuracy) or between measurement tools, and empirical data on the magnitudes of variance contributed by methodological factors for measurement tool precision are lacking.Aim: The aim of this thesis was to quantify aspects of bias and precision in three commonly employed biomechanical risk factor assessment tools - inclinometry, observation, and electromyography (EMG) - and provide recommendations guiding their use. Methods: Upper arm elevation angles (UAEAs) were assessed using inclinometers (INC) and by computer-based posture-matching observation, and bias relative to true angles was calculated. Calibration models were developed for INC data, and their efficacy in correcting measurement bias was evaluated. The total variance of trapezius and erector spinae (ES) EMG recordings during cyclic occupational work was partitioned into biological and methodological sources, including the variance uniquely attributable to sub-maximal normalisation. Using algorithms to estimate the precision of a group mean, the efficacy of different trapezius EMG study designs was evaluated. Using precision criteria, the efficacy of different normalisation methods was assessed for ES EMG recordings.Results and Discussion: Inclinometer measured UAEAs were biased from true angles, with increasing bias at higher angles. In contrast, computer based posture-matching observations were not biased from true angles. Calibration models proved effective at minimizing INC data bias. The dispersion of estimates between- and within- observers at any given set angle underlined the importance of repeated observations when estimating UAEAs. For EMG, a unique but relatively small component of the total variance was attributable to the methodological process of normalisation. Performing three repeats of the trapezius EMG normalisation task proved optimal at minimizing variance for one-day EMG studies, while two repeats sufficed for multi-day EMG studies. A prone normalisation task proved superior for maximizing normalised lumbar ES EMG precision.Conclusion: Key aspects of measurement tool accuracy, bias between tools, and tool precision were quantified, and recommendations were made to guide future research study design.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Hälsovetenskap -- Arbetsmedicin och miljömedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Health Sciences -- Occupational Health and Environmental Health (hsv//eng)

Keyword

measurement strategy
accuracy
inclinometry
electromyography
EMG
upper arm
shoulder
low back
lumbar
thoracic
Health-Promoting Work
Hälsofrämjande arbete

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view