SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-131357"
 

Search: onr:"swepub:oai:DiVA.org:kth-131357" > Development of acou...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Development of acoustic models for high frequency resonators for turbocharged IC-engines

Allam, Sabry (author)
KTH,Competence Center for Gas Exchange (CCGEx)
Knutsson, M. (author)
Bodén, Hans (author)
KTH,Farkost och flyg,Competence Center for Gas Exchange (CCGEx)
 (creator_code:org_t)
2012-06-13
2012
English.
In: SAE Technical Paper 2012-01-1559, 2012. - 400 Commonwealth Drive, Warrendale, PA, United States : SAE International.
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the present work is to develop acoustic models for these resonators where relevant effects such as the effect of a realistic mean flow on losses and 3D effects are considered. An experimental campaign has been performed where the two-port matrices and transmission loss of sample resonators have been measured without flow and for two different mean flow speeds. Models for two resonators have been developed using 1D linear acoustic theory and a FEM code (COMSOL Multi-physics). For some resonators a separate linear 1D Matlab code has also been developed. Different models, from the literature, for including the effect of mean flow on the acoustic losses at slits and perforates have been implemented in the codes and compared to the experimental data. Correct modeling of acoustic losses for resonators with complicated geometry is important for the simulation and development of new and improved silencers, and the present work contributes to this understanding. The developed models give acceptable agreement with the measured results even with flow but can be improved for 3D FEM if correct CAD data is available. The 1D linear theory can be used for simple geometries and to get a general overview related to the resonance frequencies and damping level.

Keyword

Acoustic noise
Computer aided design
Resonators
Three dimensional

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Allam, Sabry
Knutsson, M.
Bodén, Hans
Articles in the publication
SAE Technical Pa ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view