SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-14494"
 

Search: onr:"swepub:oai:DiVA.org:kth-14494" > Giant resistance sw...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Giant resistance switching in metal-insulator-manganite junctions : Evidence for Mott transition

Fors, R. (author)
Khartsev, Sergiy (author)
KTH,Materialfysik, MF
Grishin, Alexander M. (author)
KTH,Skolan för informations- och kommunikationsteknik (ICT)
 (creator_code:org_t)
2005
2005
English.
In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 71:4
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Heteroepitaxial CeO2(80 nm)/L0.67Ca0.33MnO3(400 nm) film structures have been pulsed laser deposited on LaAlO3(001) single crystals to fabricate two terminal resistance switching devices. Ag/CeO2/L0.67Ca0.33MnO3 junctions exhibit reproducible switching between a high resistance state (HRS) with insulating properties and a semiconducting or metallic low resistance state (LRS) with resistance ratios up to 10(5). Reversible electrical switching is a polar effect achievable both in continuous sweeping mode and in the pulse regime. Successive temperature crossover of electronic transport from the thermal activation of the deep levels (E-a=320 meV) at high temperatures to thermal activation of the shallow levels (E-a=40 meV) and finally at low temperatures to the regime of temperature independent resistance, usually associated with quantum tunneling, has been found for the insulating HRS. The temperature dependence of the LRS reveals a para-to-ferromagnetic phase transition in the L0.67Ca0.33MnO3 (LCMO) electrode at T-c=260 K and an anomaly at lower temperatures similar to200 K corresponding to the Curie temperature of the Mn4+ depleted part of the LCMO film. Current-voltage characteristics in the LRS are highly nonlinear, and show negative differential conductivity (NDC). We suggest that the reversible resistance switching ocurrs due to the electric field induced nucleation of filament-type conducting valence-shifted CeOx domains inside the insulating CeO2 matrix. The abrupt insulator-to-metal transition is the result of localization of 4f electronic states in Ce3+ ions and the subsequent appearance of hole conductivity in the oxygen p-bands. NDC at low temperatures is relied upon the interband scattering of CeOx carriers from a low energy, high mobility valley into a high energy valley with low mobility.

Keyword

crystal point contacts
cerium dioxide
single-crystals
memory
films
semiconductors
boundaries
conduction
interface
transport

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Fors, R.
Khartsev, Sergiy
Grishin, Alexand ...
Articles in the publication
Physical Review ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view