SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-148151"
 

Search: onr:"swepub:oai:DiVA.org:kth-148151" > Thermo-Economic Opt...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Thermo-Economic Optimization of Hybridization Options for Solar Retrofitting of Combined-Cycle Power Plants

Pihl, Erik, 1981 (author)
Chalmers University of Technology,Chalmers tekniska högskola
Spelling, James, 1987- (author)
KTH,Kraft- och värmeteknologi,Concentrated Solar Power,Kungliga Tekniska Högskolan (KTH),Royal Institute of Technology (KTH)
Johnsson, Filip, 1960 (author)
Chalmers University of Technology,Chalmers tekniska högskola
 (creator_code:org_t)
2013-08-21
2014
English.
In: Journal of solar energy engineering. - : ASME Press. - 0199-6231 .- 1528-8986. ; 136:2, s. 021001-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A thermo-economic optimization model of an integrated solar combined-cycle (ISCC) has been developed to evaluate the performance of an existing combined-cycle gas turbine (CCGT) plant when retrofitted with solar trough collectors. The model employs evolutionary algorithms to assess the optimal performance and cost of the power plant. To define the trade-offs required for maximizing gains and minimizing costs (and to identify ‘optimal’ hybridization schemes), two conflicting objectives were considered, namely, minimum required investment and maximum net present value (NPV). Optimiza- tion was performed for various feed-in tariff (FIT) regimes, with tariff levels that were either fixed or that varied with electricity pool prices. It was found that for the givencombined-cycle power plant design, only small annual solar shares (?1.2% annual share, 4% of installed capacity) could be achieved by retrofitting. The integrated solar combined-cycle design has optimal thermal storage capacities that are several times smaller than those of the corresponding solar-only design. Even with strong incentives to shift the load to periods in which the prices are higher, investment in storage capacity was not promoted. Nevertheless, the levelized costs of the additional solar-generated electricity are as low as 10 ce/kWh, compared to the 17–19 ce/kWh achieved for a reference, nonhybridized, “solar-only” concentrating solar power plant optimized with the same tools and cost dataset. The main reasons for the lower cost of the integrated solar combined-cycle power plant are improved solar-to-electric efficiency and the lower level of required investment in the steam cycle. The retrofitting of combined-cycle gas turbine plants to integrated solar combined-cycle plants with parabolic troughs represents a viable option to achieve relatively low-cost capacity expansion and strong knowledge building regarding concentrating solar power.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Keyword

Capacity expansion
Combined-cycle plants
Concentrating solar power
Concentrating solar power plant
Conflicting objectives
Knowledge building
Optimal performance
Thermoeconomic optimization
Energy Technology
Energiteknik

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view