SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-171330"
 

Search: onr:"swepub:oai:DiVA.org:kth-171330" > Molecular mechanism...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clay

Wang, Yan (author)
KTH,Teoretisk kemi och biologi
Wohlert, Jakob (author)
KTH,Fiber- och polymerteknologi,Wallenberg Wood Science Center
Bergenstråhle-Wohlert, Malin (author)
KTH,Fiber- och polymerteknologi,Wallenberg Wood Science Center
show more...
Tu, Yaoquan (author)
KTH,Teoretisk kemi och biologi
Ågren, Hans (author)
KTH,Teoretisk kemi och biologi
show less...
 (creator_code:org_t)
2015
2015
English.
In: RSC Advances. - : RSC Publishing. - 2046-2069. ; 5:67, s. 54580-54588
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Molecular dynamics simulations have been performed to investigate molecular adhesion of chitin and chitosan oligomers to montmorillonite (Mnt) clay at different degrees of acetylation (DA, 0%, 20%, 40%, 60%, 80% and 100%) and different degree of protonation (DPr, 0%, 50%, 100% mimicking pH > 6.5, pH = 6.5, pH < 4, respectively) under fully hydrated conditions. Although the Mnt surface is negatively charged and a variation in DA also implies going from a positively charged oligomer at DA = 0% to a neutral oligomer at DA = 100%, the simulations show unexpectedly small variation of the total molecular adhesion as a function of DA. From our analysis we propose that this quantitatively similar adhesion arises from two different mechanisms. At low DA, the oligomer is rich in positively charged amino groups interacting strongly with the negatively charged surface by direct electrostatic interaction. On the other hand, at high DA, electrically neutral acetyl groups are strongly correlated with the Na+ counter ions, which are in all cases stuck at the surface and the counter ions seem to act as 'glue' between the acetyl groups and the Mnt. However, when protonation was decreased, adhesion was affected and significantly lowered at neutral conditions (DPr = 0%). The reason is concluded to be differences in charge distributions of the respective functional groups. A further investigation on the intramolecular hydrogen bonds formed in CHT or CHS shows that the adsorbed conformation of the polymer is also highly affected by DA. This work provides fundamental insights into adhesion mechanisms and is of potential importance for the development of polymer-clay based composite materials.

Subject headings

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Wang, Yan
Wohlert, Jakob
Bergenstråhle-Wo ...
Tu, Yaoquan
Ågren, Hans
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
Articles in the publication
RSC Advances
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view