SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-177999"
 

Search: onr:"swepub:oai:DiVA.org:kth-177999" > Reinforcement Learn...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Reinforcement Learning Based Self-Optimization of Dynamic Fault-Tolerant Schemes in Performance-Aware RecoBlock SoCs

Navas, Byron (author)
KTH,Elektroniksystem
Sander, Ingo (author)
KTH,Elektroniksystem
Öberg, Johnny (author)
KTH,Elektroniksystem
 (creator_code:org_t)
Stockholm : KTH Royal Institute of Technology, 2015
English 30 s.
Series: TRITA-ICT/ECS ; 15:27
  • Reports (other academic/artistic)
Abstract Subject headings
Close  
  • Partial and run-time reconfiguration (RTR) technology has increased the range of opportunities and applications in the design of systems-on-chip (SoCs) based on Field-Programmable Gate Arrays (FPGAs). Nevertheless, RTR adds another complexity to the design process, particularly when embedded FPGAs have to deal with power and performance constraints uncertain environments. Embedded systems will need to make autonomous decisions, develop cognitive properties such as self-awareness and finally become self-adaptive to be deployed in the real world. Classico-line modeling and programming methods are inadequate to cope with unpredictable environments. Reinforcement learning (RL) methods have been successfully explored to solve these complex optimization problems mainly in workstation computers, yet they are rarely implemented in embedded systems. Disruptive integration technologies reaching atomic-scales will increase the probability of fabrication errors and the sensitivity to electromagnetic radiation that can generate single-event upsets (SEUs) in the configuration memory of FPGAs. Dynamic FT schemes are promising RTR hardware redundancy structures that improve dependability, but on the other hand, they increase memory system traffic. This article presents an FPGA-based SoC that is self-aware of its monitored hardware and utilizes an online RL method to self-optimize the decisions that maintain the desired system performance, particularly when triggering hardware acceleration and dynamic FT schemes on RTR IP-cores. Moreover, this article describes the main features of the RecoBlock SoC concept, overviews the RL theory, shows the Q-learning algorithm adapted for the dynamic fault-tolerance optimization problem, and presents its simulation in Matlab. Based on this investigation, the Q-learning algorithm will be implemented and verified in the RecoBlock SoC platform.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Datorsystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Computer Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Inbäddad systemteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Embedded Systems (hsv//eng)

Keyword

cognitive hardware
partial and run-time reconfiguration
FPGA
autonomic computing
self-awareness
self-healing
machine learning
dynamic fault-tolerance
partial and run-time reconfiguration
complex adaptive systems
self-awareness
self-healing
machine learning
dynamic fault-tolerance
complex adaptive systems

Publication and Content Type

vet (subject category)
rap (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Navas, Byron
Sander, Ingo
Öberg, Johnny
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Other Electrical ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Computer Systems
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Embedded Systems
Parts in the series
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view