SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-179580"
 

Search: onr:"swepub:oai:DiVA.org:kth-179580" > Numerical simulatio...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Numerical simulation for the design analysis of kinematic Stirling engines

Araoz Ramos, Joseph A. (author)
KTH,Kraft- och värmeteknologi,Facultad de Ciencias y Tecnología (FCyT), Universidad Mayor de San Simon (UMSS), Cochabamba, Bolivia
Salomon, Marianne (author)
KTH,Kraft- och värmeteknologi
Alejo, Lucio (author)
show more...
Fransson, Torsten H. (author)
KTH,Kraft- och värmeteknologi
show less...
 (creator_code:org_t)
Elsevier BV, 2015
2015
English.
In: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 159, s. 633-650
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The Stirling engine is a closed-cycle regenerative system that presents good theoretical properties. These include a high thermodynamic efficiency, low emissions levels thanks to a controlled external heat source, and multi-fuel capability among others. However, the performance of actual prototypes largely differs from the mentioned theoretical potential. Actual engine prototypes present low electrical power outputs and high energy losses. These are mainly attributed to the complex interaction between the different components of the engine, and the challenging heat transfer and fluid dynamics requirements. Furthermore, the integration of the engine into decentralized energy systems such as the Combined Heat and Power systems (CHP) entails additional complications. These has increased the need for engineering tools that could assess design improvements, considering a broader range of parameters that would influence the engine performance when integrated within overall systems. Following this trend, the current work aimed to implement an analysis that could integrate the thermodynamics, and the thermal and mechanical interactions that influence the performance of kinematic Stirling engines. In particular for their use in Combined Heat and Power systems. The mentioned analysis was applied for the study of an engine prototype that presented very low experimental performance. The numerical methodology was selected for the identification of possible causes that limited the performance. This analysis is based on a second order Stirling engine model that was previously developed and validated. The simulation allowed to evaluate the effect that different design and operational parameters have on the engine performance, and consequently different performance curves were obtained. These curves allowed to identify ranges for the charged pressure, temperature ratio, heat exchangers dimensions, crank phase angle and crank mechanical effectiveness, where the engine performance was improved. In addition, the curves also permitted to recognise ranges were the design parameters could drastically reduce the brake power and efficiency. The results also showed that the design of the engine is affected by the conditions imposed by the CHP interactions, and that the engine could reach a brake power closer to 832 W with a corresponding brake efficiency of 26% when the adequate design parameters were considered. On the other hand, the performance could also be very low; as the reported in experimental tests, with brake power measurements ranging 52-120W.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

Thermal model
Stirling engine
CHP
Simulation
Thermodynamics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Araoz Ramos, Jos ...
Salomon, Mariann ...
Alejo, Lucio
Fransson, Torste ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Energy Engineeri ...
Articles in the publication
Applied Energy
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view