SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-181384"
 

Search: onr:"swepub:oai:DiVA.org:kth-181384" > Biomechanical ruptu...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index

Polzer, Stanislav (author)
Gasser, T. Christian (author)
KTH,Hållfasthetslära (Avd.)
KTH Hållfasthetslära (Avd(creator_code:org_t)
2015-12-06
2015
English.
In: Journal of the Royal Society Interface. - : Royal Society Publishing. - 1742-5689 .- 1742-5662. ; 12:113
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured (n = 7) and intact (n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly (p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach.

Keyword

abdominal aortic aneurysm
uncertainty
model finite element
failure
wall stress

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Polzer, Stanisla ...
Gasser, T. Chris ...
Articles in the publication
Journal of the R ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view