SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-186964"
 

Search: onr:"swepub:oai:DiVA.org:kth-186964" > Performance of an e...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Gunarathne, Duleeka S.KTH,Materialvetenskap (author)

Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

  • Article/chapterEnglish2016

Publisher, publication year, extent ...

  • Elsevier,2016
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-186964
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186964URI
  • https://doi.org/10.1016/j.apenergy.2016.03.003DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20160518
  • The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency.A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature.The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required.Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed. Generally, depending on the extent of flue gas heat recovery, the system can sustain up to 65% feedstock moisture content at the highest pyrolysis temperature studied.

Subject headings and genre

  • NATURVETENSKAP Fysik hsv//swe
  • NATURAL SCIENCES Physical Sciences hsv//eng
  • Biomass gasification
  • Energy efficiency
  • Fuel substitution
  • Integration
  • Pyrolysis
  • Steel industry
  • Biomass
  • Carbon dioxide
  • Combustion
  • Flue gases
  • Flues
  • Fossil fuels
  • Fuels
  • Furnaces
  • Gasification
  • Heat treatment
  • Iron and steel industry
  • Steelmaking
  • Synthesis gas
  • Temperature
  • Waste heat
  • Waste heat utilization
  • Waste incineration
  • Waste treatment
  • Biomass gasification system
  • Biomass pre treatments
  • Combustion technology
  • Heat treatment furnaces
  • Pyrolysis temperature
  • Waste heat recovery systems
  • Heat treating furnaces

Added entries (persons, corporate bodies, meetings, titles ...)

  • Mellin, PelleKTH,Materialvetenskap(Swepub:kth)u13r9j01 (author)
  • Yang, WeihongKTH,Materialvetenskap,Swerea KIMAB AB, Sweden,ENHETEN PROCESSER(Swepub:kth)u1cf0tow (author)
  • Pettersson, M. (author)
  • Ljunggren, R. (author)
  • KTHMaterialvetenskap (creator_code:org_t)

Related titles

  • In:Applied Energy: Elsevier170, s. 353-3610306-26191872-9118

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Gunarathne, Dule ...
Mellin, Pelle
Yang, Weihong
Pettersson, M.
Ljunggren, R.
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
Articles in the publication
Applied Energy
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view