SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-189362"
 

Search: onr:"swepub:oai:DiVA.org:kth-189362" > Moffatt-drift-drive...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Moffatt-drift-driven large-scale dynamo due to a fluctuations with non-zero correlation times

Singh, Nishant K. (author)
Stockholms universitet,KTH,Nordic Institute for Theoretical Physics NORDITA,Stockholm Univ, Sweden,Nordiska institutet för teoretisk fysik (Nordita)
 (creator_code:org_t)
2016-06-09
2016
English.
In: Journal of Fluid Mechanics. - : Cambridge University Press. - 0022-1120 .- 1469-7645. ; 798, s. 696-716
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We present a theory of large-scale dynamo action in a turbulent flow that has stochastic, zero-mean fluctuations of the a parameter. Particularly interesting is the possibility of the growth of the mean magnetic field due to Moffatt drift, which is expected to he finite in a statistically anisotropic turbulence. We extend the Kraichnan Moffatt model to explore effects of finite memory of a fluctuations, in a spirit similar to that of Sridhar & Singh (Mon. Not. R. Astron. Soc., vol. 445, 2014, pp. 3770-3787). Using the first-order smoothing approximation, we derive a linear integro-differential equation governing the dynamics of the large-scale magnetic field, which is non-perturbative in the alpha-correlation time tau(alpha), We recover earlier results in the exactly solvable white-noise limit where the Moffatt drift does not contribute to the dynamo growth/decay. To study finite-memory effects, we reduce the integro-differential equation to a partial differential equation by assuming that tau(alpha). be small but non-zero and the large-scale magnetic field is slowly varying. We derive the dispersion relation and provide an explicit expression for the growth rate as a function of four independent parameters. When tau(alpha) not equal 0, we find that: (i) in the absence of the Moffatt drift, but with finite Kraichnan diffusivity, only strong a fluctuations can enable alpha mean-field dynamo (this is qualitatively similar to the white-noise case); (ii) in the general case when also the Moffatt drift is non-zero, both weak and strong a fluctuations can lead to a large-scale dynamo; and (iii) there always exists a wavenumber (k) cutoff at sonic large k beyond which the growth rate turns negative, irrespective of weak or strong a fluctuations. Thus we show that a finite Moffatt drift can always facilitate large-scale dynamo action if sufficiently strong, even in the case of weak alpha fluctuations, and the maximum growth occurs at intermediate wavenumbers.

Subject headings

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)
NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Keyword

dynamo theory
magnetohydrodynamics
turbulence theory

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Singh, Nishant K ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
and Fusion Plasma an ...
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
Articles in the publication
Journal of Fluid ...
By the university
Royal Institute of Technology
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view