SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-206421"
 

Search: onr:"swepub:oai:DiVA.org:kth-206421" > Passive Optical Top...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Cheng, YuxinKTH,Optical Network Laboratory (ON Lab) (author)

Passive Optical Top-of-Rack Interconnect for Data Center Networks

  • BookEnglish2017

Publisher, publication year, extent ...

  • KTH Royal Institute of Technology,2017
  • 31 s.
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-206421
  • ISBN:9789177293873
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206421URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:vet swepub-contenttype
  • Subject category:lic swepub-publicationtype

Notes

  • QC 20170503
  • Optical networks offering ultra-high capacity and low energy consumption per bit are considered as a good option to handle the rapidly growing traffic volume inside data center (DCs). However, most of the optical interconnect architectures proposed for DCs so far are mainly focused on the aggregation/core tiers of the data center networks (DCNs), while relying on the conventional top-of-rack (ToR) electronic packet switches (EPS) in the access tier. A large number of ToR switches in the current DCNs brings serious scalability limitations due to high cost and power consumption. Thus, it is important to investigate and evaluate new optical interconnects tailored for the access tier of the DCNs.We propose and evaluate a passive optical ToR interconnect (POTORI) architecture for the access tier. The data plane of the POTORI consists mainly of passive components to interconnect the servers within the rack as well as the interfaces toward the aggregation/core tiers. Using the passive components makes it possible to significantly reduce power consumption while achieving high reliability in a cost-efficient way.Meanwhile, our proposed POTORI’s control plane is based on a centralized rack controller, which is responsible for coordinating the communications among the servers in the rack. It can be reconfigured by software-defined networking (SDN) operation. A cycle-based medium access control (MAC) protocol and a dynamic bandwidth allocation (DBA) algorithm are designed for the POTORI to efficiently manage the exchange of control messages and the data transmission inside the rack.Simulation results show that under realistic DC traffic scenarios, the POTORI with the proposed DBA algorithm is able to achieve an average packet delay below 10 μs with the use of fast tunable optical transceivers. Moreover, we further quantify the impact of different network configuration parameters on the average packet delay. 

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Chen, Jiajia,Associate ProfessorKTH,Optical Network Laboratory (ON Lab)(Swepub:kth)u1at55ic (thesis advisor)
  • Wosinska, Lena,Professor,1951-KTH,Optical Network Laboratory (ON Lab)(Swepub:kth)u17dm074 (thesis advisor)
  • Fiorani, Matteo,Dr.KTH,Optical Network Laboratory (ON Lab)(Swepub:kth)u1utq8qt (thesis advisor)
  • Zhang, Qiong (opponent)
  • KTHOptical Network Laboratory (ON Lab) (creator_code:org_t)

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view