SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-251293"
 

Search: onr:"swepub:oai:DiVA.org:kth-251293" > RBER-Aware Lifetime...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

RBER-Aware Lifetime Prediction Scheme for 3D-TLC NAND Flash Memory

Ma, Ruixiang (author)
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.
Wu, Fei (author)
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China.
Zhang, Meng (author)
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.
show more...
Lu, Zhonghai (author)
KTH,Elektronik och inbyggda system
Wan, Jiguang (author)
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.
Xie, Changsheng (author)
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China.
show less...
Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China.;Huazhong Univ Sci & Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China. (creator_code:org_t)
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2019
2019
English.
In: IEEE Access. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2169-3536. ; 7, s. 44696-44708
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • NAND flash memory is widely used in various computing systems. However, flash blocks can sustain only a limited number of program/erase (P/E) cycles, which are referred to as the endurance. On one hand, in order to ensure data integrity, flash manufacturers often define the maximum P/E cycles of the worst block as the endurance of flash blocks. On the other hand, blocks exhibit large endurance variations, which introduce two serious problems. The first problem is that the error correcting code (ECC) is often over-provisioned, as it has to be designed to tolerate the worst case to ensure data integrity, which causes longer decoding latency. The second problem is the underutilized block's lifespan due to conservatively defined block endurance. Raw bit error rate (RBER) of most blocks have not arrived the allowable RBER based on the nominal endurance point, which implies that the conventional P/E cycle-based block retirement policies may waste large flash storage space. In this paper, to exploit the storage capacity of each flash block, we propose an RBER-aware lifetime prediction scheme based on machine learning technologies. We consider the problem that the model can lose prediction effectiveness over time and use incremental learning to update the model for adapting the changes at different lifetime stages. At run time, trained data will be gradually discarded, which can reduce memory overhead. For evaluating our purpose, four well-known machine learning techniques have been compared in terms of predictive accuracy and time overhead under our proposed lifetime prediction scheme. We also compared the predicted values with the tested values obtained in the real NAND flash-based test platform, and the experimental results show that the support vector machine (SVM) models based on our proposed lifetime prediction scheme can achieve as high as 95% accuracy for flash blocks. We also apply our proposed lifetime prediction scheme to predict the actual endurance of flash blocks at four different retention times, and the experimental results show that it can significantly improve the maximum P/E cycle of flash blocks from 37.5% to 86.3% on average. Therefore, the proposed lifetime prediction scheme can provide a guide for block endurance prediction.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorteknik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Engineering (hsv//eng)

Keyword

NAND flash
P/E cycle
retention time
RBER
machine learning

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ma, Ruixiang
Wu, Fei
Zhang, Meng
Lu, Zhonghai
Wan, Jiguang
Xie, Changsheng
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Computer Enginee ...
Articles in the publication
IEEE Access
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view