SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-259174"
 

Search: onr:"swepub:oai:DiVA.org:kth-259174" > Behind helmet blunt...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Behind helmet blunt trauma induced by ballistic impact : a computational model

Li, Xiaogai (author)
KTH,Neuronik,Department of Mechanical Engineering, Southern Methodist University, P. O. Box 750337, Dallas, TX 75275-0337, United States
Gao, X-L (author)
Kleiven, Svein, 1966- (author)
KTH,Neuronik
 (creator_code:org_t)
Elsevier, 2016
2016
English.
In: International Journal of Impact Engineering. - : Elsevier. - 0734-743X. ; 91, s. 56-67
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Behind helmet blunt trauma (BHBT) has emerged as a serious injury type experienced by soldiers in battlefields. BHBT has been found to range from skin lacerations to brain damage and extensive skull fracture. It has been believed that such injuries are caused by forces transmitted from the helmet's back face deformation (BFD), which result in local deformations of the skull and translation or rotation of the head, leading to brain injuries. In this study, head injury risks resulting from the BFD of the Advanced Combat Helmet (ACH) under ballistic impact are evaluated using finite element simulations. The head model developed at KTH in Sweden is adopted, and a helmet shell model (including foam pads) is constructed. The examined mechanical parameters include the maximum von Mises stress in the skull, pressure (mean normal stress) and maximum principal strain in the brain tissue, contact force, and head acceleration. The influences of the foam pad hardness, stand-off distance, helmet shell thickness, and impact direction on head injury risks are studied. It is found that a softer foam pad offers a better protection, but the foam pad cannot be too soft. Also, it is shown that a slightly larger stand-off distance leads to a significant reduction in head injury. In addition, the simulation results reveal that an increase in the helmet thickness reduces the injury risk. It is further observed that a 45-degree oblique frontal impact results in a lower head injury risk than a 90-degree frontal impact. Moreover, for a helmet protected head under ballistic impact, it is seen that a high risk of skull fracture does not necessarily mean an equally high risk of injury to the brain tissue. The predictions from the current model of a helmeted head under ballistic impact agree with experimental findings independently obtained by others. The newly developed model provides a useful tool for studying injury mechanisms of BHBT and evaluating the existing standards for testing and designing combat helmets.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Annan medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Other Medical Engineering (hsv//eng)

Keyword

Ballistic impact; Combat helmet; Blunt trauma; Head injury; Back face deformation

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Li, Xiaogai
Gao, X-L
Kleiven, Svein, ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Medical Engineer ...
and Other Medical En ...
Articles in the publication
International Jo ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view