SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-268996"
 

Search: onr:"swepub:oai:DiVA.org:kth-268996" > Applications of X-r...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects

Peña Fernández, Marta (author)
Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
Witte, F (author)
Tozzi, G (author)
 (creator_code:org_t)
Blackwell Publishing, 2020
2020
English.
In: Journal of Microscopy. - : Blackwell Publishing. - 0022-2720 .- 1365-2818. ; 277:3, s. 179-196
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Bone as such displays an intrinsic regenerative potential following fracture; however, this capacity is limited with large bone defects that cannot heal spontaneously. The management of critical-sized bone defects remains a major clinical and socioeconomic need with osteoregenerative biomaterials constantly under development aiming at promoting and enhancing bone healing. X-ray computed tomography (XCT) has become a standard and essential tool for quantifying structure-function relationships in bone and biomaterials, facilitating the development of novel bone tissue engineering strategies. This paper presents recent advancements in XCT analysis of biomaterial-mediated bone regeneration. As a noninvasive and nondestructive technique, XCT allows for qualitative and quantitative evaluation of three-dimensional (3D) scaffolds and biomaterial microarchitecture, bone growth into the scaffold as well as the 3D characterisation of biomaterial degradation and bone regeneration in vitro and in vivo. Furthermore, in combination with in situ mechanical testing and digital volume correlation (DVC), XCT demonstrated its potential to better understand the bone-biomaterial interactions and local mechanics of bone regeneration during the healing process in relation to the regeneration achieved in vivo, which will likely provide valuable knowledge for the development and optimisation of novel osteoregenerative biomaterials. LAY DESCRIPTION: Bone, being a dynamically adaptable material, displays excellent regenerative properties following fracture. However, the self-healing capacity of bone becomes more difficult with large bone defects. Those defects are common and occur in many clinical situations; hence, biomaterials are mostly used to restore both bone structure and function in the defect site. X-ray computed tomography (XCT) is a powerful tool to evaluate bone regeneration in critical-sized defects after the implantation of biomaterials, allowing to an improved understanding of the regeneration process following different bone tissue engineering approaches. This paper focuses on recent advancements in XCT analysis to characterise biomaterial-mediated bone regeneration in critical-sized defects. XCT supports three-dimensional (3D) analysis of biomaterials, scaffolds and regenerated bone microarchitecture, as well as bone ingrowth into the scaffold. As a nondestructive technique, XCT allows for a 3D characterisation of biomaterial degradation and bone regeneration over time. In addition, XCT combined with in situ mechanical experiments and digital volume correlation (DVC) provides a 3D evaluation and quantification of bone-biomaterial interactions and deformation mechanisms during the regeneration process. This remains essential for the development and enhancement of novel biomaterials able to produce bone that is comparable with the native tissue they aim to replace.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering (hsv//eng)

Keyword

Biomaterial
X-ray computed tomography
bone
digital volume correlation
in situ mechanics
osteoregeneration

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Peña Fernández, ...
Witte, F
Tozzi, G
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Medical Engineer ...
Articles in the publication
Journal of Micro ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view