SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-269000"
 

Search: onr:"swepub:oai:DiVA.org:kth-269000" > Optimization of dig...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Optimization of digital volume correlation computation in SR-microCT images of trabecular bone and bone-biomaterial systems.

Peña Fernández, Marta (author)
Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, PO1 3DJ, UK
Barber, A H (author)
Blunn, G W (author)
show more...
Tozzi, G (author)
show less...
 (creator_code:org_t)
2018-07-26
2018
English.
In: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 272:3, s. 213-228
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A micromechanical characterization of biomaterials for bone tissue engineering is essential to understand the quality of the newly regenerated bone, enabling the improvement of tissue regeneration strategies. A combination of microcomputed tomography in conjunction with in situ mechanical testing and digital volume correlation (DVC) has become a powerful technique to investigate the internal deformation of bone structure at a range of dimensional scales. However, in order to obtain accurate three-dimensional strain measurement at tissue level, high-resolution images must be acquired, and displacement/strain measurement uncertainties evaluated. The aim of this study was to optimize imaging parameters, image postprocessing and DVC settings to enhance computation based on 'zero-strain' repeated high-resolution synchrotron microCT scans of trabecular bone and bone-biomaterial systems. Low exposures to SR X-ray radiation were required to minimize irradiation-induced tissue damage, resulting in the need of advanced three-dimensional filters on the reconstructed images to reduce DVC-measured strain errors. Furthermore, the computation of strain values only in the hard phase (i.e. bone, biomaterial) allowed the exclusion of large artefacts localized in the bone marrow. This study demonstrated the suitability of a local DVC approach based on synchrotron microCT images to investigate the micromechanics of trabecular bone and bone-biomaterial composites at tissue level with a standard deviation of the errors in the region of 100 microstrain after a thorough optimization of DVC computation. LAY DESCRIPTION: Understanding the quality of newly regenerated bone after implantation of novel biomaterials is essential to improve bone tissue engineering strategies and formulation of biomaterials. The relationship between microstructure and mechanics of bone has been previously addressed combining microcomputed tomography with in situ mechanical testing. The addition of an image-based experimental technique such as digital volume correlation (DVC) allows to characterize the deformation of materials in a three-dimensional manner. However, in order to obtain accurate information at the micro-scale, high-resolution images, obtained for example by using synchrotron radiation microcomputed tomography, as well as optimization of the DVC computation are needed. This study presents the effect of different imaging parameters, image postprocessing and DVC settings for as accurate investigation of trabecular bone structure and bone-biomaterial interfaces. The results showed that when appropriate image postprocessing and DVC settings are used DVC computation results in very low strain errors. This is of vital importance for a correct understanding of the deformation in bone-biomaterial systems and the ability of such biomaterials in producing new bone comparable with the native tissue they are meant to replace.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering (hsv//eng)

Keyword

bone
bone-biomaterial
digital volume correlation
displacement/strain uncertainties
microCT
synchrotron

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Peña Fernández, ...
Barber, A H
Blunn, G W
Tozzi, G
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Medical Engineer ...
Articles in the publication
Journal of Micro ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view