SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-269016"
 

Search: onr:"swepub:oai:DiVA.org:kth-269016" > Environmental impac...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Nilsson, AstridKTH,Skolan för kemi, bioteknologi och hälsa (CBH),Science for Life Laboratory, SciLifeLab (author)

Environmental impacts and limitations of third-generation biobutanol : Life cycle assessment of n-butanol produced by genetically engineered cyanobacteria

  • Article/chapterEnglish2020

Publisher, publication year, extent ...

  • 2019-04
  • WILEY,2020
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-269016
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-269016URI
  • https://doi.org/10.1111/jiec.12843DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20200322
  • Photosynthetic cyanobacteria have attracted interest as production organisms for third-generation biofuels, where sunlight and CO2 are used by microbes directly to synthesize fuel molecules. A particularly suitable biofuel is n-butanol, and there have been several laboratory reports of genetically engineered photosynthetic cyanobacteria capable of synthesizing and secreting n-butanol. This work evaluates the environmental impacts and cumulative energy demand (CED) of cyanobacteria-produced n-butanol through a cradle-to-grave consequential life cycle assessment (LCA). A hypothetical production plant in northern Sweden (area 1 ha, producing 5-85 m(3) n-butanol per year) was considered, and a range of cultivation formats and cellular productivity scenarios assessed. Depending on the scenario, greenhouse gas emissions (GHGe) ranged from 16.9 to 58.6 gCO(2)eq/MJ(BuOH) and the CED from 3.8 to 13 MJ/MJ(BuOH). Only with the assumption of a nearby paper mill to supply waste sources for heat and CO2 was the sustainability requirement of at least 60% GHGe savings compared to fossil fuels reached, though placement in northern Sweden reduced energy needed for reactor cooling. A high CED in all scenarios shows that significant metabolic engineering is necessary, such as a carbon partitioning of >90% to n-butanol, as well as improved light utilization, to begin to displace fossil fuels or even first- and second-generation bioethanol.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Shabestary, KiyanKTH,Systembiologi,Science for Life Laboratory, SciLifeLab(Swepub:kth)u1a0fac0 (author)
  • Brandao, MiguelKTH,Hållbar utveckling, miljövetenskap och teknik(Swepub:kth)u1135v8m (author)
  • Hudson, Elton P.KTH,Science for Life Laboratory, SciLifeLab,Systembiologi(Swepub:kth)u1ja6ik3 (author)
  • KTHSkolan för kemi, bioteknologi och hälsa (CBH) (creator_code:org_t)

Related titles

  • In:Journal of Industrial Ecology: WILEY24:11088-19801530-9290

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Nilsson, Astrid
Shabestary, Kiya ...
Brandao, Miguel
Hudson, Elton P.
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Environmental En ...
Articles in the publication
Journal of Indus ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view