SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-272773"
 

Search: onr:"swepub:oai:DiVA.org:kth-272773" > Uncoupling the role...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations

Bahuguna, Jyotika (author)
Aix Marseille Univ, Inst Syst Neurosci, Marseille, France.
Sahasranamam, Ajith (author)
Ongil Pvt Ltd, Singapore, Singapore.
Kumar, Arvind (author)
KTH,Beräkningsvetenskap och beräkningsteknik (CST)
Aix Marseille Univ, Inst Syst Neurosci, Marseille, France Ongil Pvt Ltd, Singapore, Singapore. (creator_code:org_t)
2020-03-30
2020
English.
In: PloS Computational Biology. - : Public Library of Science. - 1553-734X .- 1553-7358. ; 16:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The excess of 15-30 Hz (beta-band) oscillations in the basal ganglia is one of the key signatures of Parkinson's disease (PD). The STN-GPe network is integral to generation and modulation of beta band oscillations in basal ganglia. However, the role of changes in the firing rates and spike bursting of STN and GPe neurons in shaping these oscillations has remained unclear. In order to uncouple their effects, we studied the dynamics of STN-GPe network using numerical simulations. In particular, we used a neuron model, in which firing rates and spike bursting can be independently controlled. Using this model, we found that while STN firing rate is predictive of oscillations but GPe firing rate is not. The effect of spike bursting in STN and GPe neurons was state-dependent. That is, only when the network was operating in a state close to the border of oscillatory and non-oscillatory regimes, spike bursting had a qualitative effect on the beta band oscillations. In these network states, an increase in GPe bursting enhanced the oscillations whereas an equivalent proportion of spike bursting in STN suppressed the oscillations. These results provide new insights into the mechanisms underlying the transient beta bursts and how duration and power of beta band oscillations may be controlled by an interplay of GPe and STN firing rates and spike bursts. Author summary The STN-GPe network undergoes a change in firing rates as well as increased bursting during excessive beta band oscillations during Parkinson's disease. In this work we uncouple their effects by using a novel neuron model and show that presence of oscillations is contingent on the increase in STN firing rates, however the effect of spike bursting on oscillations depends on the network state. In a network state on the border of oscillatory and non-oscillatory regime, GPe spike bursting strengthens oscillations. The effect of spike bursting in the STN depends on the proportion of GPe neurons bursting. These results suggest a mechanism underlying a transient beta band oscillation bursts often seen in experimental data.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Bahuguna, Jyotik ...
Sahasranamam, Aj ...
Kumar, Arvind
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Bioinformatics
Articles in the publication
PloS Computation ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view