SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-281393"
 

Search: onr:"swepub:oai:DiVA.org:kth-281393" > A methodology to si...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A methodology to simulate automotive disc brake tribology and emissions

Riva, Gabriele, 1988- (author)
KTH,Tribologi,Brembo S.p.A.
Wahlström, Jens, docent (thesis advisor)
KTH,Maskinkonstruktion (Inst.)
Vernersson, Tore, Docent (opponent)
Chalmers tekniska högskola
 (creator_code:org_t)
ISBN 9789178736577
KTH Royal Institute of Technology, 2020
English 56 s.
Series: TRITA-ITM-AVL ; 2020:39
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Airborne particle emissions from road vehicles are one of the main issues affecting urban air quality. Vehicle disc brakes are one of the most important sources of non-exhaust emissions, which have recently been considered to be as important as exhaust emissions. In disc brakes, the pads are pushed against the rotating disc to slow down the vehicle. The contact surfaces of the disc and pads are worn, some of the debris becomes airborne and can be harmful to human health if inhaled. Particle emissions from disc brakes are influenced by a greater amount of contact phenomena at the sliding interfaces, e.g. friction, wear, contact temperature, contact pressure and surface topography. Due to the difficulty in accessing the pad-to-disc contact in the brake system during testing, it is hard to study contact phenomena. Moreover, experiments need the friction material and brake system to be produced at least in their prototype configuration. The aim of this thesis is to develop a methodology based on simulation to better understand contact phenomena and to evaluate the tribological and emission performance of friction material and brake systems in the early design phase.Different simulation approaches can be adopted, depending on what is to be evaluated. A macro-scale approach based on finite element analysis (FEA) can be used to evaluate wear, particle emission and the coefficient of friction (COF) of the entire brake system. A meso-scale approach based on cellular automaton (CA) simulation can be used to evaluate the local contact behaviour on the disc and pad surfaces, and the influence of the single components of the friction mixture. These two different-scale simulation approaches can be integrated to generate an overall multi-scale simulation procedure to investigate and predict the contact phenomena in brake systems.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Tribologi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Tribology (hsv//eng)

Keyword

Machine Design
Maskinkonstruktion

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Riva, Gabriele, ...
Wahlström, Jens, ...
Vernersson, Tore ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Tribology
Parts in the series
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view