SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-287950"
 

Search: onr:"swepub:oai:DiVA.org:kth-287950" > Minimise thermo-mec...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Minimise thermo-mechanical batch variations when processing medical grade lactide based copolymers in additive manufacturing

Ahlinder, Astrid (author)
KTH,Polymerteknologi
Charlon, Sebastien (author)
IMT Lille Douai, Ecole nationale supérieure Mines-Télécom Lille Douai, Materials & Processes Center, Cité scientifique, Villeneuve d'Ascq Cedex, France
Fuoco, Tiziana, PhD, 1986- (author)
KTH,Polymerteknologi
show more...
Soulestin, Jeremie (author)
IMT Lille Douai, Ecole nationale supérieure Mines-Télécom Lille Douai, Materials & Processes Center, Cité scientifique, Villeneuve d'Ascq Cedex, France
Finne Wistrand, Anna, 1976- (author)
KTH,Polymerteknologi
show less...
 (creator_code:org_t)
Elsevier BV, 2020
2020
English.
In: Polymer degradation and stability. - : Elsevier BV. - 0141-3910 .- 1873-2321. ; 181
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Additive manufacturing is suitable for producing complex geometries; however, variation in thermo-mechanical properties are observed during one batch cycle when degradable aliphatic polyesters of medical grade are used in melt extrusion-based methods. This is one important reason for why additive manufacturing has not yet been fully utilised to produce degradable medical implants. Herein, the internal variation has been minimised during one batch cycle by assessing the effect of different processing parameters when using commercially available medical grade copolymers. To minimise the molar mass, thermal and mechanical variation within one batch cycle, the rheological fingerprint of the commercially available medical grade poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-trimethylene carbonate) has been correlated to the process parameters of the ARBURG Plastic Freeforming. An increase in the temperature up to 220°C and the associated increase in pressure are beneficial for the viscoelastic and thermally stable poly(L-lactide-co-ε-caprolactone). In contrast, a temperature below 220°C should be used for the poly(L-lactide-co-trimethylene carbonate) to reduce the variation in strain at break during one batch cycle. The residence time is decreased through the increase of the discharge parameter. An increase in temperature is however required to reduce the viscosity of the polymer and allow the pressure to stay within the machine limitations at higher discharge parameters. The results are highly relevant to the development of additive manufacturing for the production of degradable medical devices with identical properties. In fact, Food and Drug Administration guidelines for additive manufacturing of medical implants specify the need to control changes in material properties during the process.

Subject headings

NATURVETENSKAP  -- Kemi -- Polymerkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Polymer Chemistry (hsv//eng)

Keyword

Additive manufacturing
e-caprolactone
Freeforming
L-lactide
medical device
polyester
polymer degradation
trimethylene carbonate
Aliphatic compounds
Food additives
Functional polymers
Melt spinning
Aliphatic polyester
Discharge parameters
Food and Drug Administration
Increase in pressure
Mechanical variations
Processing parameters
Thermomechanical properties
3D printers

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view