SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-291178"
 

Search: onr:"swepub:oai:DiVA.org:kth-291178" > Kinetic Modeling of...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kinetic Modeling of Nonmetallic Inclusions Behavior in Molten Steel : A Review

Park, Joo Hyun (author)
KTH,Processer,Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, South Korea
Zhang, L. (author)
 (creator_code:org_t)
2020-10-14
2020
English.
In: Metallurgical and materials transactions. B, process metallurgy and materials processing science. - : Springer Nature. - 1073-5615 .- 1543-1916. ; 51:6, s. 2453-2482
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The kinetic modeling for the nucleation, size growth, and compositional evolution of nonmetallic inclusions in steel was extensively reviewed in the present article. The nucleation and initial growth of inclusion in molten steel during deoxidation as well as the collision growth, motion, removal, and entrapment of inclusions in the molten steel in continuous casting (CC) tundish and strand were discussed. Moreover, the recent studies on the prediction of inclusion composition in CC semiproducts were introduced. Since the 1990s, the development of thermodynamic model and relevant databases for inclusion engineering has been initiated by the steel industry. Later, the commercial software FACTSAGE employing the FACT database was widely used to predict the gas (atmosphere/bubble)–liquid (steel/slag/inclusion)–solid (refractory/slag/steel/inclusion) multiphase equilibria. With the help of the comprehensive thermodynamic database and solution models in conjunction with the development of user-friendly computing packages, the kinetics of inclusion evolution in molten steel can be successfully predicted based on several kinetic models such as the coupled reaction (CR) model, reaction zone model, and tank series recirculation (TSR) model. However, some parameters are needed to represent the real processes according to the model employed at different operational or experimental conditions. The effect of reoxidation on the evolution of inclusions in the ladle and tundish, which was experimentally confirmed, can be simulated by the effective equilibrium reaction zone (EERZ) model. The complex slag–steel interfacial reaction phenomena have been successfully explained by the interfacial kinetic model based on the dynamic interfacial tension and oxygen adsorption/desorption characteristics at the slag-steel interface.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Keyword

Crystallization
Database systems
Gas adsorption
Kinetic parameters
Kinetic theory
Nucleation
Slags
Steel foundry practice
Steelmaking
Thermodynamics
Compositional evolution
Dynamic interfacial tension
Evolution of inclusions
Experimental conditions
Interfacial reaction phenomena
Multiphase equilibria
Non-metallic inclusions
Thermodynamic database
Reaction kinetics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Park, Joo Hyun
Zhang, L.
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
and Metallurgy and M ...
Articles in the publication
Metallurgical an ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view