SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-292825"
 

Search: onr:"swepub:oai:DiVA.org:kth-292825" > 3D Co-cultured Endo...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Qiao, S. (author)

3D Co-cultured Endothelial Cells and Monocytes Promoted Cancer Stem Cells' Stemness and Malignancy

  • Article/chapterEnglish2021

Publisher, publication year, extent ...

  • 2020-12-15
  • American Chemical Society,2021
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-292825
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292825URI
  • https://doi.org/10.1021/acsabm.0c00927DOI
  • http://kipublications.ki.se/Default.aspx?queryparsed=id:235014295URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20210525
  • Cancer stem cells (CSCs) are self-renewing and constitute the primary cause of cancer relapse post-cancer therapy. The CSC niche is composed of various nonmalignant stromal cells that support CSCs' survival during cancer chemoradiotherapy. Understanding the cross-talk between CSCs and stromal cells could pave the way for developing therapeutic strategies to eradicate CSCs. Traditionally, CSC research has been relying on animal models, which can give rise to complications and poor translation in clinical practice. An efficient model to co-culture CSCs and stromal cells is urgently needed. Hence, we leveraged our expertise in enriching CSCs from in vitro cell lines with a 3D alginate-based platform, as reported previously. We established a 3D co-culture system that allowed us to study the interactions between stromal cells and CSCs over an extended period. We showed that the self-renewal capacity and stemness of CSCs were significantly enhanced when co-cultured with 3D cultured human umbilical vein endothelial cells (HUVECs) or a human monocyte cell line (THP1). Strikingly, the expression of MDR1 in 3D co-cultured CSCs was upregulated, leading to enhanced chemotoxic drug tolerance. We suggest that our in vitro co-culture model can impact CSC research and clinical practice when the goal is to develop therapeutics that target and eradicate CSCs by targeting stromal cells. 

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Zhao, Y. (author)
  • Tian, H. (author)
  • Manike, I. (author)
  • Ma, L. (author)
  • Yan, HongjiKarolinska Institutet,KTH,Glykovetenskap(Swepub:kth)u1qjm063 (author)
  • Tian, W. (author)
  • KTHGlykovetenskap (creator_code:org_t)

Related titles

  • In:ACS Applied Bio Materials: American Chemical Society4:1, s. 441-4502576-6422

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view