SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-307532"
 

Search: onr:"swepub:oai:DiVA.org:kth-307532" > Nonlinear Behaviour...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Nonlinear Behaviour of Concrete Buttress Dams under High-Frequency Excitations Taking into Account Topographical Amplifications

Abbasiverki, Roghayeh (author)
KTH,Betongbyggnad
Malm, Richard, 1980- (author)
KTH,Betongbyggnad
Ansell, Anders (author)
KTH,Betongbyggnad
show more...
Nordström, Erik (author)
KTH,Betongbyggnad
show less...
 (creator_code:org_t)
Hindawi Limited, 2021
2021
English.
In: Shock and Vibration. - : Hindawi Limited. - 1070-9622 .- 1875-9203. ; 2021, s. 1-22
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Concrete buttress dams could potentially be susceptible to high-frequency vibrations, especially in the cross-stream direction, due to their slender design. Previous studies have mainly focused on low-frequency vibrations in stream direction using a simplified foundation model with the massless method, which does not consider topographic amplifications. This paper therefore investigates the nonlinear behaviour of concrete buttress dams subjected to high-frequency excitations, considering cross-stream vibrations. For comparison, the effect of low-frequency excitations is also investigated. The influence of the irregular topography of the foundation surface on the amplification of seismic waves at the foundation surface and thus in the dam is considered by a rigorous method based on the domain-reduction method using the direct finite element method. The sensitivity of the calculated response of the dam to the free-field modelling approach is investigated by comparing the result with analyses using an analytical method based on one-dimensional wave propagation theory and a massless approach. Available deconvolution software is based on the one-dimensional shear wave propagation to transform the earthquake motion from the foundation surface to the corresponding input motion at depth. Here, a new deconvolution method for both shear and pressure wave propagation is developed based on an iterative time-domain procedure using a one-dimensional finite element column. The examples presented showed that topographic amplifications of high-frequency excitations have a significant impact on the response of this type of dam. Cross-stream vibrations reduced the safety of the dam due to the opening of the joints and the increasing stresses. The foundation modelling approach had a significant impact on the calculated response of the dam. The massless method produced unreliable results, especially for high-frequency excitations. The free-field modelling with the analytical method led to unreliable joint openings. It is therefore recommended to use an accurate approach for foundation modelling, especially in cases where nonlinearity is considered.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Infrastrukturteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Infrastructure Engineering (hsv//eng)

Keyword

Betongbyggnad
Concrete Structures

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view