SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-333424"
 

Search: onr:"swepub:oai:DiVA.org:kth-333424" > Intrinsic thermo-ac...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Intrinsic thermo-acoustic instability criteria based on frequency response of flame transfer function

Kojourimanesh, Mohammad (author)
Dept. of Mechanical Engineering, TU/e, Eindhoven, The Netherlands
Kornilov, Viktor (author)
Dept. of Mechanical Engineering, TU/e, Eindhoven, The Netherlands
de Goey, Philip (author)
Dept. of Mechanical Engineering, TU/e, Eindhoven, The Netherlands
show more...
Lopez Arteaga, Ines (author)
KTH,Teknisk mekanik,Dept. of Mechanical Engineering, TU/e, Eindhoven, The Netherlands
show less...
Dept of Mechanical Engineering, TU/e, Eindhoven, The Netherlands Teknisk mekanik (creator_code:org_t)
The Institute of Noise Control Engineering of the USA, Inc. 2022
2022
English.
In: Internoise 2022. - : The Institute of Noise Control Engineering of the USA, Inc..
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • A study of Intrinsic Thermo-Acoustic (ITA) instability behavior of flames anchored to a burner deck is performed by introducing a mapping between the Flame Transfer Function, FTF(s), defined in the complex (Laplace) domain and the experimentally measured Flame Frequency Response, FFR(iω). The conventional approach requires a system identification procedure to obtain the FTF(s) from the measured FFR(iω). Next, root-finding techniques are applied to define the complex eigenfrequencies. The common practice is to fit the FTF(s) by a rational function that may lead to artifacts like spurious poles and zeros. The purpose of the present work is to establish instability criteria which are directly applicable in the frequency domain. The particular case is considered where the acoustic boundary conditions at both sides of the flame are anechoic. Therefore, the pure ITA mode is treated. First, the causality of the measured FFR(iω) is checked. Then, the criteria of the ITA mode instability applicable to the FFR(iω) phase and magnitude, are derived. Causality properties are used to find the unstable frequency, growth rate, and even the maximum possible value of the linear growth rate. In addition, a procedure is explained to reconstruct the flame transfer function in the complex plane s from the measured flame frequency response which could be an alternative method to study the FTF behavior in the complex domain instead of its estimation with a rational function.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Publication and Content Type

ref (subject category)
kon (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Kojourimanesh, M ...
Kornilov, Viktor
de Goey, Philip
Lopez Arteaga, I ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Fluid Mechanics ...
Articles in the publication
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view