SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-34405"
 

Search: onr:"swepub:oai:DiVA.org:kth-34405" > In vitro and in viv...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization

Dånmark, Staffan (author)
KTH,Fiber- och polymerteknologi
Finne-Wistrand, Anna (author)
KTH,Fiber- och polymerteknologi
Schander, K. (author)
show more...
Hakkarainen, Minna (author)
KTH,Fiber- och polymerteknologi
Arvidson, K. (author)
Mustafa, K. (author)
Albertsson, Ann-Christine (author)
KTH,Fiber- och polymerteknologi
show less...
 (creator_code:org_t)
Elsevier BV, 2011
2011
English.
In: ACTA BIOMATERIALIA. - : Elsevier BV. - 1742-7061. ; 7:5, s. 2035-2046
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Degradation characteristics in response to electron beam sterilization of designed and biodegradable aliphatic polyester scaffolds are relevant for clinically successful synthetic graft tissue regeneration Scaffold degradation in vitro and in vivo were documented and correlated to the macroscopic structure and chemical design of the original polymer The materials tested were of inherently diverse hydrophobicity and crystallinity poly(L-lactide) (poly(LLA)) and random copolymers from L-lactide and epsilon-caprolactone or 1.5-dioxepan-2-one, fabricated into porous and non-porous scaffolds After sterilization, the samples underwent hydrolysis in vitro for up to a year In vivo, scaffolds were surgically implanted into rat calvarial defects and retrieved for analysis after 28 and 91 days In vitro, poly(L-lactide-co-1, 5-dioxepan-2-one) (poly(LLA-co-DXO)) samples degraded most rapidly during hydrolysis, due to the pronounced chain-shortening reaction caused by the sterilization. This was indicated by the rapid decrease in both mass and molecular weight of poly(LLA-co-DXO). Poly(L-lactide-co-epsilon-caprolactone) (poly(LLA-co-CL)) samples were also strongly affected by sterilization, but mass loss was more gradual; molecular weight decreased rapidly during hydrolysis Least affected by sterilization were the poly(LLA) samples, which subsequently showed low mass loss rate and molecular weight decrease during hydrolysis. Mechanical stability varied greatly. poly(LLA-co-CL) withstood mechanical testing for up to 182 days, while poly(LLA) and poly(LLA-co-DXO) samples quickly became too brittle Poly(LLA-co-DXO) samples unexpectedly degraded more rapidly in vitro than in vivo. After sterilization by electron beam irradiation, the three biodegradable polymers present widely diverse degradation profiles, both in vitro and in vivo. Each exhibits the potential to be tailored to meet diverse clinical tissue engineering requirements

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Annan industriell bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Other Industrial Biotechnology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Polymerteknologi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Polymer Technologies (hsv//eng)

Keyword

Aliphatic polyesters
Electron beam sterilization
Degradation
Tissue engineering
Scaffolds
Other bioengineering
Materials science
Teknisk materialvetenskap

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view