SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-345767"
 

Search: onr:"swepub:oai:DiVA.org:kth-345767" > Autonomous self-hea...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Autonomous self-healing hybrid energy harvester based on the combination of triboelectric nanogenerator and quantum dot solar cell

Xiao, Tianxiao (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Tu, Suo (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Tian, Ting (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
show more...
Chen, Wei (author)
Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, 518118 Shenzhen, China
Cao, Wei (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
Liang, Suzhe (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Guo, Renjun (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Liu, Liangzhen (author)
Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
Li, Yanan (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Guan, Tianfu (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
Liu, Haochen (author)
Department of Electrical & Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China, 1088 Xueyuan Avenue
Wang, Kai (author)
Department of Electrical & Electronic Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China, 1088 Xueyuan Avenue
Schwartzkopf, Matthias (author)
Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85
Fischer, Roland A. (author)
Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
Roth, Stephan V. (author)
KTH,Fiberprocesser,Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany, Notkestraße 85
Müller-Buschbaum, Peter (author)
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany, James-Franck-Str. 1
show less...
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany, James-Franck-Str. 1 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, 518118 Shenzhen, China (creator_code:org_t)
Elsevier BV, 2024
2024
English.
In: Nano Energy. - : Elsevier BV. - 2211-2855 .- 2211-3282. ; 125
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Realization of multi-source energy harvesting with one single device would maximize power output. Thus, it is emerging as a promising strategy towards renewable energy generation and has attracted worldwide attention in the past decades. Capable of capturing mechanical energy that is ubiquitous in the ambient environment, triboelectric nanogenerator (TENG) has been considered a novel yet effective source towards next-generation energy harvesting. In this work, a flexible hybrid energy harvester (HEH) is developed via the rational integration of autonomous self-healing TENG and high bending-stable lead sulfide quantum dot (PbS QD) solar cell, enabling independent electricity generation by two different mechanisms. The single-electrode mode TENG component with self-healing is realized by a polydimethylsiloxane/Triton X-100 (PDMS/TX100) mixture as the dielectric layer and the shared gold (Au) electrode, which generates 0.39 µA of output current (Iout), 24.6 V of output voltages (Vout), 15.4 nC of transfer charges (Qsc), and 7.80 mW m−2 of output power peak density. The thin-film solar cell component is based on a PbS QD layer as the light absorber with a planar structure fabricated under low-cost and compatible conditions, achieving 22.8 mA cm−2 of short-circuit current density (Jsc) and 4.92% of power conversion efficiency (PCE). As a proof of concept, an electronic watch is successfully powered by harnessing ambient mechanical and solar energy with a hybridized energy cell. This approach will offer more opportunities to construct a versatile platform towards remote monitoring and smart home systems.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

Autonomous self-healing
Grazing-incidence X-ray scattering
Hybrid energy harvester
Quantum dot solar cell
Triboelectric nanogenerator

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view