SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-38334"
 

Search: onr:"swepub:oai:DiVA.org:kth-38334" > Theory of strongly ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Theory of strongly correlated electron systems. I. Intersite coulomb interaction and the approximation of renormalized fermions in total energy calculations

Sandalov, Igor (author)
Uppsala universitet,KTH,Kondenserade materiens teori,Fysiska institutionen,Teoretisk magnetism
Lundin, U (author)
Eriksson, Olle (author)
Uppsala universitet,Fysiska institutionen,Teoretisk magnetism
 (creator_code:org_t)
Wiley, 2005
2005
English.
In: International Journal of Quantum Chemistry. - : Wiley. - 0020-7608 .- 1097-461X. ; 102:6, s. 1019-1045
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue).

Subject headings

NATURVETENSKAP  -- Kemi -- Teoretisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Theoretical Chemistry (hsv//eng)
NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Keyword

density functional theory
strongly correlated electrons
lanthanides
band structure calculations
ground-state properties
Quantum chemistry
Kvantkemi
Condensed matter physics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view