SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-4441"
 

Search: onr:"swepub:oai:DiVA.org:kth-4441" > Structural concrete...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Structural concrete elements subjected to air blast loading

Magnusson, Johan (author)
KTH,Betongbyggnad
Ansell, Anders (thesis advisor)
KTH,Byggvetenskap
Vretblad, Bengt, Professor (opponent)
Försvarshögskolan, Stockholm
 (creator_code:org_t)
Stockholm : KTH, 2007
English xii, 82 s.
Series: Trita-BKN. Bulletin, 1103-4270 ; 92
  • Licentiate thesis (other academic/artistic)
Abstract Subject headings
Close  
  • In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete strength. The nominal concrete compressive strength varied between 30 MPa and 200 MPa. A total of 89 beams were tested of which 49 beams were reinforced with varying amounts of tensile reinforcement. These beams were also reinforced with stirrups and steel fibres were added to a few beams. The remaining 40 beams were only reinforced with steel fibres with a fibre content of 1.0 percent by volume. Two different fibre lengths having constant length-to-diameter ratio were employed. The tests consisted of both static and air blast tests on simply supported beams. The blast tests were performed within a shock tube with a detonating explosive charge. All experimental research focused on deflection events, failure modes and loads transferred to the supports. The dynamic analyses involve single-degree-of-freedom (SDOF) modelling of the beam response and the use of iso-damage curves. Also, the dynamic support reactions were calculated and compared with test results. For beams with tensile reinforcement, the failure mode of some beam types was observed to change from a flexural failure in the static tests to a flexural shear failure in the dynamic tests. Beams with a high ratio of reinforcement and not containing steel fibres failed in shear, whereas beams with a lower ratio of reinforcement failed in flexure. The introduction of steel fibres prevented shear cracks to develop, thus increasing the shear strength of the beams. The presence of steel fibres also increased the ductility and the residual load capacity of the beams. Beams subjected to air blast loading obtained an increased load capacity when compared to the corresponding beams subjected to static loading. The SDOF analyses showed good agreement with the experimental results regardless of concrete strength and reinforcement amount. The results of using iso-damage curves indicate conservative results with larger load capacities of the beams than expected. The theoretical evaluations of the dynamic reactions were in agreement with the measured average reactions, both in amplitudes and in general shape. The experimental results with steel fibre reinforced concrete beams indicate that the dynamic strength was higher than the corresponding static strength and that the toughness was reduced when increasing the compressive strength. Beams of normal strength concrete failed by fibre pull-out while a few beams of high strength concrete partly failed by fibre ruptures. It may be favourable to use shorter fibres with smaller aspect ratios in structural elements of high strength concrete and subjected to large dynamic loads. Further research should involve studies on the size effect, on different boundary conditions, on different types of structural elements and on the combination of blast and fragment loads. The theoretical work should involve analyses both with the use of SDOF modelling and finite element analysis.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Husbyggnad (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Building Technologies (hsv//eng)

Keyword

Building engineering
Byggnadsteknik

Publication and Content Type

vet (subject category)
lic (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Magnusson, Johan
Ansell, Anders
Vretblad, Bengt, ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Civil Engineerin ...
and Building Technol ...
Parts in the series
Trita-BKN. Bulle ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view