SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-4628"
 

Search: onr:"swepub:oai:DiVA.org:kth-4628" > Integration of sili...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Integration of silicide nanowires as Schottky barrier source/drain in FinFETs

Zhang, Zhen, 1979- (author)
KTH,Integrerade komponenter och kretsar
Zhang, Shi-Li (thesis advisor)
KTH,Integrerade komponenter och kretsar
King Liu, Tsu-Jae, Professor (opponent)
UC-Berkeley
 (creator_code:org_t)
Stockholm : KTH, 2008
English xvi, 80 s.
Series: Trita-ICT/MAP AVH, 1653-7610 ; 2008:02
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • The steady and aggressive downscaling of the physical dimensions of the conventional metal-oxide-semiconductor field-effect-transistor (MOSFET) has been the main driving force for the IC industry and information technology over the past decades. As the device dimensions approach the fundamental limits, novel double/trigate device architecture such as FinFET is needed to guarantee the ultimate downscaling. Furthermore, Schottky barrier source/drain technology presents a promising solution to reducing the parasitic source/drain resistance in the FinFET. The ultimate goal of this thesis is to integrate Schottky barrier source/drain in FinFETs, with an emphasis on process development and integration towards competitive devices. First, a robust sidewall transfer lithography (STL) technology is developed for mass fabrication of Si-nanowires in a controllable manner. A scalable self-aligned silicide (SALICIDE) process for Pt-silicides is also developed. Directly accessible and uniform NWs of Ni- and Pt-silicides are routinely fabricated by combining STL and SALICIDE. The silicide NWs are characterized by resistivity values comparable to those of their thin–film counterparts. Second, a systematic experimental study is performed for dopant segregation (DS) at the PtSi/Si and NiSi/Si interfaces in order to modulate the effective SBHs needed for competitive FinFETs. Two complementary schemes SIDS (silicidation induced dopant segregation) and SADS (silicide as diffusion source) are compared, and both yield substantial SBH modifications for both polarities of Schottky diodes (i.e. φbn and φbp). Third, Schottky barrier source/drain MOSFETs are fabricated in UTB-SOI. With PtSi that is usually used as the Schottky barrier source/drain for p-channel SB-MOSFETs, DS with appropriate dopants leads to excellent performance for both types of SBMOSFETs. However, a large variation in position of the PtSi/Si interface with reference to the gate edge (i.e., underlap) along the gate width is evidenced by TEM. Finally, integration of PtSi NWs in FinFETs is carried out by combining the STL technology, the Pt-SALICIDE process and the DS technology, all developed during the course of this thesis work. The performance of the p-channel FinFETs is improved by DS with B, confirming the SB-FinFET concept despite device performance fluctuations mostly likely due to the presence of the PtSi-to-gate underlap.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

CMOS technology
MOSFET
FinFET
Schottky diode
Schottky barrier soure/drain
silicide
SALICIDE
SOI
multiple-gate
nanowire
sidewall transfer lithography
Electronics
Elektronik

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Zhang, Zhen, 197 ...
Zhang, Shi-Li
King Liu, Tsu-Ja ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Other Electrical ...
Parts in the series
Trita-ICT/MAP AV ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view