SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:kth-9749"
 

Search: onr:"swepub:oai:DiVA.org:kth-9749" > Structure of Diethy...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Kim, JungwookAlbert Einstein Coll Med (author)

Structure of Diethyl Phosphate Bound to the Binuclear Metal Center of Phosphotriesterase

  • Article/chapterEnglish2008

Publisher, publication year, extent ...

  • 2008-08-15
  • American Chemical Society (ACS),2008
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-9749
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9749URI
  • https://doi.org/10.1021/bi800971vDOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20100714
  • The bacterial phosphotriesterase (PTE) from Pseudomonas diminuta catalyzes the hydrolysis of organophosphate esters at rates close to the diffusion limit. X-ray diffraction studies have shown that a binuclear metal center is positioned in the active site of PTE and that this complex is responsible for the activation of the nucleophilic water from solvent. In this paper, the three-dimensional structure of PTE was determined in the presence of the hydrolysis product, diethyl phosphate (DEP), and a product analogue, cacodylate. In the structure of the PTE−diethyl phosphate complex, the DEP product is found symmetrically bridging the two divalent cations. The DEP displaces the hydroxide from solvent that normally bridges the two divalent cations in structures determined in the presence or absence of substrate analogues. One of the phosphoryl oxygen atoms in the PTE−DEP complex is 2.0 Å from the α-metal ion, while the other oxygen is 2.2 Å from the β-metal ion. The two metal ions are separated by a distance of 4.0 Å. A similar structure is observed in the presence of cacodylate. Analogous complexes have previously been observed for the product complexes of isoaspartyl dipeptidase, d-aminoacylase, and dihydroorotase from the amidohydrolase superfamily of enzymes. The experimentally determined structure of the PTE−diethyl phosphate product complex is inconsistent with a recent proposal based upon quantum mechanical/molecular mechanical simulations which postulated the formation of an asymmetrical product complex bound exclusively to the β-metal ion with a metal−metal separation of 5.3 Å. This structure is also inconsistent with a chemical mechanism for substrate hydrolysis that utilizes the bridging hydroxide as a base to abstract a proton from a water molecule loosely associated with the α-metal ion. Density functional theory (DFT) calculations support a reaction mechanism that utilizes the bridging hydroxide as the direct nucleophile in the hydrolysis of organophosphate esters by PTE.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Tsai, Ping-ChuanTexas A&M Univ, Dept Chem (author)
  • Chen, ShiluKTH,Teoretisk kemi(Swepub:kth)u1jm35sc (author)
  • Himo, FahmiKTH,Teoretisk kemi(Swepub:kth)u1hl0yc6 (author)
  • Almo, Steven C.Albert Einstein Coll Med (author)
  • Raushel, Frank M.Texas A&M Univ, Dept Chem (author)
  • Albert Einstein Coll MedTexas A&M Univ, Dept Chem (creator_code:org_t)

Related titles

  • In:Biochemistry: American Chemical Society (ACS)47:36, s. 9497-95040006-29601520-4995

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view