SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-131508"
 

Search: onr:"swepub:oai:DiVA.org:liu-131508" > Carbon-rich icosahe...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Carbon-rich icosahedral boron carbides beyond B4C and their thermodynamic stabilities at high temperature and pressure from first principles

Ektarawong, Annop (author)
Linköpings universitet,Tunnfilmsfysik,Tekniska fakulteten
Simak, Sergey (author)
Linköpings universitet,Teoretisk Fysik,Tekniska fakulteten
Alling, Björn (author)
Linköpings universitet,Tunnfilmsfysik,Tekniska fakulteten,Max Planck Institute Eisenforsch GmbH, Germany
 (creator_code:org_t)
AMER PHYSICAL SOC, 2016
2016
English.
In: PHYSICAL REVIEW B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 94:5
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We investigate the thermodynamic stability of carbon-rich icosahedral boron carbide at different compositions, ranging from B4C to B2C, using first-principles calculations. Apart fromB4C, generally addressed in the literature, B2.5C, represented by B10C2p (C-C), where C-p and (C-C) denote a carbon atom occupying the polar site of the icosahedral cluster and a diatomic carbon chain, respectively, is predicted to be thermodynamically stable under high pressures with respect to B4C as well as pure boron and carbon phases. The thermodynamic stability of B2.5C is determined by the Gibbs free energy G as a function of pressure p and temperature T, in which the contributions from the lattice vibrations and the configurational disorder are obtained within the quasiharmonic and the mean-field approximations, respectively. The stability range of B2.5C is then illustrated through the p-T phase diagrams. Depending on the temperatures, the stability range of B2.5C is predicted to be within the range between 40 and 67 GPa. At T greater than or similar to 500 K, the icosahedral C-p atoms in B2.5C configurationally disorder at the polar sites. By investigating the properties of B2.5C, e.g., elastic constants and phonon and electronic density of states, we demonstrate that B2.5C is both mechanically and dynamically stable at zero pressure, and is an electrical semiconductor. Furthermore, based on the sketched phase diagrams, a possible route for experimental synthesis of B2.5C as well as a fingerprint for its characterization from the simulations of x-ray powder diffraction pattern are suggested.

Subject headings

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ektarawong, Anno ...
Simak, Sergey
Alling, Björn
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Physical Science ...
and Condensed Matter ...
Articles in the publication
PHYSICAL REVIEW ...
By the university
Linköping University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view