SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-149356"
 

Search: onr:"swepub:oai:DiVA.org:liu-149356" > Soft Electronic Str...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Soft Electronic Strain Sensor with Chipless Wireless Readout: Toward Real-Time Monitoring of Bladder Volume

Stauffer, Flurin (author)
Swiss Fed Inst Technol, Switzerland
Zhang, Qiang (author)
Swiss Fed Inst Technol, Switzerland
Tybrandt, Klas (author)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten,Swiss Fed Inst Technol, Switzerland
show more...
Zambrano, Byron Llerena (author)
Swiss Fed Inst Technol, Switzerland
Hengsteler, Julian (author)
Swiss Fed Inst Technol, Switzerland
Stoll, Andre (author)
Swiss Fed Inst Technol, Switzerland
Trueeb, Camill (author)
Swiss Fed Inst Technol, Switzerland
Hagander, Michael (author)
Swiss Fed Inst Technol, Switzerland
Sujata, Jean-Marc (author)
Swiss Fed Inst Technol, Switzerland
Hoffmann, Felix (author)
Swiss Fed Inst Technol, Switzerland
Stekhoven, Joy Schuurmans (author)
Swiss Fed Inst Technol, Switzerland
Quack, Josefine (author)
Swiss Fed Inst Technol, Switzerland
Zilly, Hannes (author)
Swiss Fed Inst Technol, Switzerland
Goedejohann, Johannes (author)
Swiss Fed Inst Technol, Switzerland
Schneider, Marc P. (author)
Univ Zurich, Switzerland; Univ Zurich, Switzerland; Univ Bern, Switzerland
Kessler, Thomas M. (author)
Univ Zurich, Switzerland
Taylor, William R. (author)
Swiss Fed Inst Technol, Switzerland
Kueng, Roland (author)
Zurich Univ Appl Sci, Switzerland
Voeroes, Janos (author)
Swiss Fed Inst Technol, Switzerland
show less...
 (creator_code:org_t)
2018-05-16
2018
English.
In: Advanced Materials Technologies. - : WILEY. - 2365-709X. ; 3:6
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Sensing mechanical tissue deformation in vivo can provide detailed information on organ functionality and tissue states. To bridge the huge mechanical mismatch between conventional electronics and biological tissues, stretchable electronic systems have recently been developed for interfacing tissues in healthcare applications. A major challenge for wireless electronic implants is that they typically require microchips, which adds complexity and may compromise long-term stability. Here, a chipless wireless strain sensor technology based on a novel soft conductor with high cyclic stability is reported. The composite material consists of gold-coated titanium dioxide nanowires embedded in a soft silicone elastomer. The implantable strain sensor is based on an resonant circuit which consists of a stretchable plate capacitor and a coil for inductive readout of its resonance frequency. Successful continuous wireless readout during 50% strain cycles is demonstrated. The sensor element has a Youngs modulus of 260 kPa, similar to that of the bladder in order to not impair physiological bladder expansion. A proof-of-principle measurement on an ex vivo porcine bladder is presented, which shows the feasibility of the presented materials and devices for continuous, wireless strain monitoring of various tissues and organs in vivo.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Textil-, gummi- och polymermaterial (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Textile, Rubber and Polymeric Materials (hsv//eng)

Keyword

chipless; soft conductors; strain sensors; stretchable electronics; wireless sensors

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view