SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:liu-152131"
 

Sökning: onr:"swepub:oai:DiVA.org:liu-152131" > Receding-Horizon La...

  • Andersson, Olov,1979-Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB (författare)

Receding-Horizon Lattice-based Motion Planning with Dynamic Obstacle Avoidance

  • Artikel/kapitelEngelska2018

Förlag, utgivningsår, omfång ...

  • Institute of Electrical and Electronics Engineers (IEEE),2018
  • electronicrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:liu-152131
  • https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152131URI
  • https://doi.org/10.1109/CDC.2018.8618964DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:kon swepub-publicationtype

Anmärkningar

  • This work was partially supported by FFI/VINNOVA, the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research (SSF) project Symbicloud, the ELLIIT Excellence Center at Linköping-Lund for Information Technology, Swedish Research Council (VR) Linnaeus Center CADICS, and the National Graduate School in Computer Science, Sweden (CUGS).
  • A key requirement of autonomous vehicles is the capability to safely navigate in their environment. However, outside of controlled environments, safe navigation is a very difficult problem. In particular, the real-world often contains both complex 3D structure, and dynamic obstacles such as people or other vehicles. Dynamic obstacles are particularly challenging, as a principled solution requires planning trajectories with regard to both vehicle dynamics, and the motion of the obstacles. Additionally, the real-time requirements imposed by obstacle motion, coupled with real-world computational limitations, make classical optimality and completeness guarantees difficult to satisfy. We present a unified optimization-based motion planning and control solution, that can navigate in the presence of both static and dynamic obstacles. By combining optimal and receding-horizon control, with temporal multi-resolution lattices, we can precompute optimal motion primitives, and allow real-time planning of physically-feasible trajectories in complex environments with dynamic obstacles. We demonstrate the framework by solving difficult indoor 3D quadcopter navigation scenarios, where it is necessary to plan in time. Including waiting on, and taking detours around, the motions of other people and quadcopters.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Ljungqvist, Oskar,1990-Linköpings universitet,Reglerteknik,Tekniska fakulteten(Swepub:liu)osklj59 (författare)
  • Tiger, Mattias,1989-Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB(Swepub:liu)matti23 (författare)
  • Axehill, Daniel,1978-Linköpings universitet,Reglerteknik,Tekniska fakulteten(Swepub:liu)danax42 (författare)
  • Heintz, Fredrik,1975-Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB(Swepub:liu)frehe08 (författare)
  • Linköpings universitetArtificiell intelligens och integrerade datorsystem (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:2018 IEEE Conference on Decision and Control (CDC): Institute of Electrical and Electronics Engineers (IEEE), s. 4467-4474978153861395597815386139489781538613962

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy