SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-157204"
 

Search: onr:"swepub:oai:DiVA.org:liu-157204" > Overcoming transpor...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Overcoming transport limitations in miniaturized electrophoretic delivery devices

Seitanidou, Maria S (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
Tybrandt, Klas, 1982- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
Berggren, Magnus, 1968- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
show more...
Simon, Daniel T, 1978- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
show less...
 (creator_code:org_t)
2019
2019
English.
In: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 19:8, s. 1427-1435
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and iontronic technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

Subject headings

NATURVETENSKAP  -- Kemi -- Analytisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Analytical Chemistry (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view