SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-157356"
 

Search: onr:"swepub:oai:DiVA.org:liu-157356" > An extended dose-vo...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

An extended dose-volume model in high dose-rate brachytherapy : Using mean-tail-dose to reduce tumor underdosage

Morén, Björn, 1987- (author)
Linköpings universitet,Optimeringslära,Tekniska fakulteten
Larsson, Torbjörn, 1957- (author)
Linköpings universitet,Optimeringslära,Tekniska fakulteten
Carlsson Tedgren, Åsa, 1968- (author)
Karolinska Institutet,Linköpings universitet,Avdelningen för radiologiska vetenskaper,Medicinska fakulteten,Region Östergötland, Medicinsk strålningsfysik,Karolinska University Hospital, Stockholm, Sweden
 (creator_code:org_t)
2019-05-15
2019
English.
In: Medical physics (Lancaster). - : Wiley-Blackwell Publishing Inc.. - 0094-2405 .- 2473-4209. ; 46:6, s. 2556-2566
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Purpose High dose-rate brachytherapy is a method of radiotherapy for cancer treatment in which the radiation source is placed within the body. In addition to give a high enough dose to a tumor, it is also important to spare nearby healthy organs [organs at risk (OAR)]. Dose plans are commonly evaluated using the so-called dosimetric indices; for the tumor, the portion of the structure that receives a sufficiently high dose is calculated, while for OAR it is instead the portion of the structure that receives a sufficiently low dose that is of interest. Models that include dosimetric indices are referred to as dose-volume models (DVMs) and have received much interest recently. Such models do not take the dose to the coldest (least irradiated) volume of the tumor into account, which is a distinct weakness since research indicates that the treatment effect can be largely impaired by tumor underdosage even to small volumes. Therefore, our aim is to extend a DVM to also consider the dose to the coldest volume. Methods An improved DVM for dose planning is proposed. In addition to optimizing with respect to dosimetric indices, this model also takes mean dose to the coldest volume of the tumor into account. Results Our extended model has been evaluated against a standard DVM in ten prostate geometries. Our results show that the dose to the coldest volume could be increased, while also computing times for the dose planning were improved. Conclusion While the proposed model yields dose plans similar to other models in most aspects, it fulfils its purpose of increasing the dose to cold tumor volumes. An additional benefit is shorter solution times, and especially for clinically relevant times (of minutes) we show major improvements in tumour dosimetric indices.

Subject headings

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)

Keyword

cold volumes
CVaR
dose-volume model
dosimetric index
dwell time optimization
EUD
mean-tail-dose
TCP

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view