SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-162461"
 

Search: onr:"swepub:oai:DiVA.org:liu-162461" > White matter tracin...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

White matter tracing combined with electric field simulation – A patient-specific approach for deep brain stimulation

Nordin, Teresa, 1987- (author)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
Zsigmond, Peter, 1966- (author)
Linköpings universitet,Avdelningen för neuro- och inflammationsvetenskap,Medicinska fakulteten,Region Östergötland, Neurokirurgiska kliniken US
Pujol, Sonia (author)
Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, USA; Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, USA
show more...
Westin, Carl-Fredrik (author)
Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, USA
Wårdell, Karin, 1959- (author)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
show less...
 (creator_code:org_t)
Elsevier, 2019
2019
English.
In: NeuroImage. - : Elsevier. - 2213-1582. ; 24, s. 1-11
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • ObjectiveDeep brain stimulation (DBS) in zona incerta (Zi) is used for symptom alleviation in essential tremor (ET). Zi is positioned along the dentato-rubro-thalamic tract (DRT). Electric field simulations with the finite element method (FEM) can be used for estimation of a volume where the stimulation affects the tissue by applying a fixed isolevel (VDBS). This work aims to develop a workflow for combined patient-specific electric field simulation and white matter tracing of the DRT, and to investigate the influence on the VDBS from different brain tissue models, lead design and stimulation modes. The novelty of this work lies in the combination of all these components.MethodPatients with ET were implanted in Zi (lead 3389, n = 3, voltage mode; directional lead 6172, n = 1, current mode). Probabilistic reconstruction from diffusion MRI (dMRI) of the DRT (n = 8) was computed with FSL Toolbox. Brain tissue models were created for each patient (two homogenous, one heterogenous isotropic, one heterogenous anisotropic) and the respective VDBS (n = 48) calculated from the Comsol Multiphysics FEM simulations. The DRT and VDBS were visualized with 3DSlicer and superimposed on the preoperative T2 MRI, and the common volumes calculated. Dice Coefficient (DC) and level of anisotropy were used to evaluate and compare the brain models.ResultCombined patient-specific tractography and electric field simulation was designed and evaluated, and all patients showed benefit from DBS. All VDBS overlapped the reconstructed DRT. Current stimulation showed prominent difference between the tissue models, where the homogenous grey matter deviated most (67 < DC < 69). Result from heterogenous isotropic and anisotropic models were similar (DC > 0.95), however the anisotropic model consistently generated larger volumes related to a greater extension of the electric field along the DBS lead. Independent of tissue model, the steering effect of the directional lead was evident and consistent.ConclusionA workflow for patient-specific electric field simulations in combination with reconstruction of DRT was successfully implemented. Accurate tissue classification is essential for electric field simulations, especially when using the current control stimulation. With an accurate targeting and tractography reconstruction, directional leads have the potential to tailor the electric field into the desired region.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk laboratorie- och mätteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Laboratory and Measurements Technologies (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering (hsv//eng)

Keyword

Deep brain stimulation (DBS)
Essential tremor (ET)
Diffusion MRI (dMRI)
Tractography
Dentato-rubro-thalamic tract (DRT)
Zona Incerta (Zi)
Electrical conductivity tensor

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • NeuroImage (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Nordin, Teresa, ...
Zsigmond, Peter, ...
Pujol, Sonia
Westin, Carl-Fre ...
Wårdell, Karin, ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Medical Engineer ...
and Medical Laborato ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Medical Engineer ...
Articles in the publication
NeuroImage
By the university
Linköping University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view