SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-175307"
 

Search: onr:"swepub:oai:DiVA.org:liu-175307" > Uncertainty-Aware C...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Uncertainty-Aware Convolutional Neural Networks for Vision Tasks on Sparse Data

Eldesokey, Abdelrahman, 1989- (author)
Linköpings universitet,Datorseende,Tekniska fakulteten
Felsberg, Michael, Professor, 1974- (thesis advisor)
Linköpings universitet,Datorseende,Tekniska fakulteten
Khan, Fahad Shahbaz, Senior Lecturer, 1983- (thesis advisor)
Linköpings universitet,Datorseende,Tekniska fakulteten
show more...
Bowden, Richard, Professor (opponent)
Centre for Vision, Speech and Signal Processing (CVSSP), Department of Electrical and Electronic Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
show less...
 (creator_code:org_t)
ISBN 9789179297015
Linköping : Linköping University Electronic Press, 2021
English 59 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Early computer vision algorithms operated on dense 2D images captured using conventional monocular or color sensors. Those sensors embrace a passive nature providing limited scene representations based on light reflux, and are only able to operate under adequate lighting conditions. These limitations hindered the development of many computer vision algorithms that require some knowledge of the scene structure under varying conditions. The emergence of active sensors such as Time-of-Flight (ToF) cameras contributed to mitigating these limitations; however, they gave a rise to many novel challenges, such as data sparsity that stems from multi-path interference, and occlusion.Many approaches have been proposed to alleviate these challenges by enhancing the acquisition process of ToF cameras or by post-processing their output. Nonetheless, these approaches are sensor and model specific, requiring an individual tuning for each sensor. Alternatively, learning-based approaches, i.e., machine learning, are an attractive solution to these problems by learning a mapping from the original sensor output to a refined version of it. Convolutional Neural Networks (CNNs) are one example of powerful machine learning approaches and they have demonstrated a remarkable success on many computer vision tasks. Unfortunately, CNNs naturally operate on dense data and cannot efficiently handle sparse data from ToF sensors.In this thesis, we propose a novel variation of CNNs denoted as the Normalized Convolutional Neural Networks that can directly handle sparse data very efficiently. First, we formulate a differentiable normalized convolution layer that takes in sparse data and a confidence map as input. The confidence map provides information about valid and missing pixels to the normalized convolution layer, where the missing values are interpolated from their valid vicinity. Afterwards, we propose a confidence propagation criterion that allows building cascades of normalized convolution layers similar to the standard CNNs. We evaluated our approach on the task of unguided scene depth completion and achieved state-of-the-art results using an exceptionally small network.As a second contribution, we investigated the fusion of a normalized convolution network with standard CNNs employing RGB images. We study different fusion schemes, and we provide a thorough analysis for different components of the network. By employing our best fusion strategy, we achieve state-of-the-art results on guided depth completion using a remarkably small network.Thirdly, to provide a statistical interpretation for confidences, we derive a probabilistic framework for the normalized convolutional neural networks. This framework estimates the input confidence in a self-supervised manner and propagates it to provide a statistically valid output confidence. When compared against existing approaches for uncertainty estimation in CNNs such as Bayesian Deep Learning, our probabilistic framework provides a higher quality measure of uncertainty at a significantly lower computational cost.Finally, we attempt to employ our framework in a common task in CNNs, namely upsampling. We formulate the upsampling problem as a sparse problem, and we employ the normalized convolutional neural networks to solve it. In comparison to existing approaches, our proposed upsampler is structure-aware while being light-weight. We test our upsampler with various optical flow estimation networks, and we show that it consistently improves the results. When integrated with a recent optical flow network, it sets a new state-of-the-art on the most challenging optical flow dataset.
  • Tidiga datorseendealgoritmer arbetade med täta 2D-bilder som spelats in i gråskala eller med färgkameror. Dessa är passiva bildsensorer som under gynnsamma ljusförhållanden ger en begränsad scenrepresentation baserad endast på ljusflöde. Dessa begränsningar hämmade utvecklingen av de många datorseendealgoritmer som kräver information om scenens struktur under varierande ljusförhållanden. Utvecklingen av aktiva sensorer såsom kameror baserade på Time-of-Flight (ToF) bidrog till att lindra dessa begränsningar. Dessa gav emellertid istället upphov till många nya utmaningar, såsom bearbetning av gles data kommen av flervägsinterferens samt ocklusion.Man har försökt tackla dessa utmaningar genom att förbättra insamlingsprocessen i TOFkameror eller genom att efterbearbeta deras data. Tidigare föreslagna metoder har dock varit sensor- eller till och med modellspecifika där man måste ställa in varje enskild sensor. Ett attraktivt alternativ är inlärningsbaserade metoder där man istället lär sig förhållandet mellan sensordatan och en förbättrad version av dito. Ett kraftfullt exempel på inlärningsbaserade metoder är neurala faltningsnät (CNNs). Dessa har varit extremt framgångsrika inom datorseende, men förutsätter tyvärr tät data och kan därför inte på ett effektivt sätt bearbeta ToF-sensorernas glesa data.I denna avhandling föreslår vi en ny variant av faltningsnät som vi kallar normaliserade faltningsnät (eng. Normalized Convolutional Neural Networks) och som direkt kan arbeta med gles data. Först skapar vi ett deriverbart faltningsnätlager baserat på normaliserad faltning som tar in gles data samt en konfidenskarta. Konfidenskartan innehåller information om vilka pixlar vi har mätningar för och vilka som saknar mätningar. Modulen interpolerar sedan pixlar som saknar mätningar baserat på närliggande pixlar för vilka mätningar finns. Därefter föreslår vi ett kriterie för att propagera konfidens vilket tillåter oss att bygga en kaskad av normaliserade faltningslager motsvarande kaskaden av faltningslager i ett faltningsnät. We utvärderade metoden på scendjupkompletteringsproblemet utan färgbilder och uppnådde state-of-the-art-prestanda med ett mycket litet nätverk.Som ett andra bidrag undersökte vi sammanslagningen av normaliserade faltningsnät med konventionella faltningsnät som arbetar med vanliga färgbilder. We undersöker olika sätt att slå samman näten och ger en grundlig analys för de olika nätverksdelarna. Den bästa sammanslagningsmetoden uppnår state-of-the-art-prestanda på scendjupkompletteringsproblemed med färgbilder, återigen med ett mycket litet nätverk.Som ett tredje bidrag försöker vi statistiskt tolka prediktionerna från det normaliserade faltningsnätet. Vi härleder ett statistiskt ramverk för detta ändamål där det normala faltningsnätet via självstyrd inlärning lär sig estimera konfidenser och propagera dessa till en statistiskt korrekt sannolikhet. När vi jämför med befintliga metoder för att prediktera osäkerhet i faltningsnät, exempelvis via Bayesiansk djupinlärning, så ger vårt probabilistiska ramverk bättre estimat till en lägre beräkningskostnad.Slutligen försöker vi använda vårt ramverk för en uppgift man ofta löser med vanliga faltningsnät, nämligen uppsampling. We formulerar uppsamplingsproblemet som om vi fått in gles data och löser det med normaliserade faltningsnät. Jämfört med befintliga metoder är den föreslagna metoden både medveten om lokal bildstruktur och lättviktig. Vi testar vår uppsamplare diverse optisktflödesnät och visar att den konsekvent ger förbättrade resultat. När vi integrerar den med ett nyligen föreslaget optisktflödesnät slår vi alla befintliga metoder för estimering av optiskt flöde.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datorseende och robotik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Vision and Robotics (hsv//eng)

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view