SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-196490"
 

Search: onr:"swepub:oai:DiVA.org:liu-196490" > PIC simulations of ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

PIC simulations of stable surface waves on a subcritical fast magnetosonic shock front

Dieckmann, Mark Eric (author)
Linköpings universitet,Medie- och Informationsteknik,Tekniska fakulteten
Huete, Cesar (author)
Univ Carlos III Madrid, Grp Mecan Fluidos, Leganes 28911, Spain
Cobos Campos, Francisco (author)
Univ Castilla La Mancha, ETSI Ind, Ciudad Real 13071, Spain
show more...
Bret, Antoine Claude (author)
Univ Castilla La Mancha, ETSI Ind, Ciudad Real 13071, Spain
Folini, Doris (author)
Univ Lyon, ENS de Lyon, Univ Lyon 1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574 F-69230, Saint-Genis-Laval, France
Eliasson, Bengt Erik (author)
Univ Strathclyde, SUPA, Glasgow G4 0NG, Scotland, United Kingdom
Walder, Rolf (author)
Univ Lyon, ENS de Lyon, Univ Lyon 1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574 F-69230, Saint-Genis-Laval, France
show less...
 (creator_code:org_t)
IOP Publishing Ltd, 2023
2023
English.
In: Physica Scripta. - : IOP Publishing Ltd. - 0031-8949 .- 1402-4896. ; 98:9
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • We study with particle-in-cell (PIC) simulations the stability of fast magnetosonic shocks. They expand across a collisionless plasma and an orthogonal magnetic field that is aligned with one of the directions resolved by the 2D simulations. The shock speed is 1.6 times the fast magnetosonic speed when it enters a layer with a reduced density of mobile ions, which decreases the shock speed by up to 15% in 1D simulations. In the 2D simulations, the density of mobile ions in the layer varies sinusoidally perpendicularly to the shock normal. We resolve one sine period. This variation only leads to small changes in the shock speed evidencing a restoring force that opposes a shock deformation. As the shock propagates through the layer, the ion density becomes increasingly spatially modulated along the shock front and the magnetic field bulges out where the mobile ion density is lowest. The perturbed shock eventually reaches a steady state. Once it leaves the layer, the perturbations of the ion density and magnetic field oscillate along its front at a frequency close to the lower-hybrid frequency; the shock is mediated by a standing wave composed of obliquely propagating lower-hybrid waves. We perform three 2D simulations with different box lengths along the shock front. The shock front oscillations are aperiodically damped in the smallest box with the fastest variation of the ion density, strongly damped in the intermediate one, and weakly damped in the largest box. The shock front oscillations perturb the magnetic field in a spatial interval that extends by several electron skin depths upstream and downstream of the shock front and could give rise to Whistler waves that propagate along the shock's magnetic field overshoot. Similar waves were observed in hybrid and PIC simulations and by the MMS satellite mission.

Subject headings

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Keyword

PIC simulation
Collisionless plasma
shock

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view