SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-21351"
 

Search: onr:"swepub:oai:DiVA.org:liu-21351" > Glycosylation diffe...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

Halling Linder, Cecilia (author)
Östergötlands Läns Landsting,Linköpings universitet,Klinisk kemi,Hälsouniversitetet
Narisawa, Sonoko (author)
Sanford Children's Health Research Center
Millán, José Luis (author)
Sanford Children's Health Research Center
show more...
Magnusson, Per (author)
Östergötlands Läns Landsting,Linköpings universitet,Klinisk kemi,Hälsouniversitetet
show less...
 (creator_code:org_t)
Elsevier BV, 2009
2009
English.
In: Bone. - : Elsevier BV. - 1873-2763 .- 8756-3282. ; 45:5, s. 987-993
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and the sALP-FcD(10) isoforms faithfully mimic the biological properties of the human BALP isoforms in vivo validating the use of these recombinant enzymes in studies aimed at dissecting the pathophysiology and treating hypophosphatasia.

Keyword

MEDICINE
MEDICIN

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Bone (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view