SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-36792"
 

Search: onr:"swepub:oai:DiVA.org:liu-36792" > From Motion Plannin...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle

Wzorek, Mariusz, 1978- (author)
Linköpings universitet,Tekniska högskolan,KPLAB - Laboratoriet för kunskapsbearbetning
Conte, Gianpaolo, 1974- (author)
Linköpings universitet,Tekniska högskolan,KPLAB - Laboratoriet för kunskapsbearbetning
Rudol, Piotr, 1979- (author)
Linköpings universitet,Tekniska högskolan,KPLAB - Laboratoriet för kunskapsbearbetning
show more...
Merz, Torsten, 1971- (author)
Linköpings universitet,Tekniska högskolan,AUTTEK - Autonomous Unmanned Aerial Vehicle Research Group
Duranti, Simone, 1972- (author)
Linköpings universitet,Tekniska högskolan,AUTTEK - Autonomous Unmanned Aerial Vehicle Research Group
Doherty, Patrick, 1957- (author)
Linköpings universitet,Tekniska högskolan,KPLAB - Laboratoriet för kunskapsbearbetning
show less...
 (creator_code:org_t)
2006
2006
English.
In: Proceedings of the 21st Bristol UAV Systems Conference (UAVS).
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously in dynamic and complex operational environments is becoming increasingly more common. While the application domains in which they are currently used are still predominantly military in nature, in the future we can expect wide spread usage in thecivil and commercial sectors. In order to insert such vehicles into commercial airspace, it is inherently important that these vehicles can generate collision-free motion plans and also be able to modify such plans during theirexecution in order to deal with contingencies which arise during the course of operation. In this paper, wepresent a fully deployed autonomous unmanned aerial vehicle, based on a Yamaha RMAX helicopter, whichis capable of navigation in urban environments. We describe a motion planning framework which integrates two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Treestogether with a path following controller that is used during path execution. Integrating deliberative services, suchas planners, seamlessly with control components in autonomous architectures is currently one of the major open problems in robotics research. We show how the integration between the motion planning framework and thecontrol kernel is done in our system. Additionally, we incorporate a dynamic path reconfigurability scheme. It offers a surprisingly efficient method for dynamic replanning of a motion plan based on unforeseen contingencies which may arise during the execution of a plan. Those contingencies can be inserted via ground operator/UAV interaction to dynamically change UAV flight paths on the fly. The system has been verified through simulation and in actual flight. We present empirical results of the performance of the framework and the path following controller.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Keyword

Computer science
Datavetenskap

Publication and Content Type

ref (subject category)
kon (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view