SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-49432"
 

Search: onr:"swepub:oai:DiVA.org:liu-49432" > The type IV mucolip...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel

Dong, X.-P. (author)
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
Cheng, X. (author)
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
Mills, E. (author)
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
show more...
Delling, M. (author)
Department of Cardiology, Children's Hospital Boston, Enders 1350, 320 Longwood Avenue, Boston, MA 02115, United States
Wang, F. (author)
Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Kurz, Tino (author)
Linköpings universitet,Hälsouniversitetet,Farmakologi
Xu, H. (author)
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, United States
show less...
 (creator_code:org_t)
2008-09-14
2008
English.
In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 455:7215, s. 992-996
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • TRPML1 (mucolipin 1, also known as MCOLN1) is predicted to be an intracellular late endosomal and lysosomal ion channel protein that belongs to the mucolipin subfamily of transient receptor potential (TRP) proteins. Mutations in the human TRPML1 gene cause mucolipidosis type IV disease (ML4). ML4 patients have motor impairment, mental retardation, retinal degeneration and iron-deficiency anaemia. Because aberrant iron metabolism may cause neural and retinal degeneration, it may be a primary cause of ML4 phenotypes. In most mammalian cells, release of iron from endosomes and lysosomes after iron uptake by endocytosis of Fe3+-bound transferrin receptors, or after lysosomal degradation of ferritin-iron complexes and autophagic ingestion of iron-containing macromolecules, is the chief source of cellular iron. The divalent metal transporter protein DMT1 (also known as SLC11A2) is the only endosomal Fe2+ transporter known at present and it is highly expressed in erythroid precursors. Genetic studies, however, suggest the existence of a DMT1-independent endosomal and lysosomal Fe2+ transport protein. By measuring radiolabelled iron uptake, by monitoring the levels of cytosolic and intralysosomal iron and by directly patch-clamping the late endosomal and lysosomal membrane, here we show that TRPML1 functions as a Fe2+ permeable channel in late endosomes and lysosomes. ML4 mutations are shown to impair the ability of TRPML1 to permeate Fe2+ at varying degrees, which correlate well with the disease severity. A comparison of TRPML1-/-ML4 and control human skin fibroblasts showed a reduction in cytosolic Fe2+ levels, an increase in intralysosomal Fe 2+ levels and an accumulation of lipofuscin-like molecules in TRPML1-/- cells. We propose that TRPML1 mediates a mechanism by which Fe2+ is released from late endosomes and lysosomes. Our results indicate that impaired iron transport may contribute to both haematological and degenerative symptoms of ML4 patients. ©2008 Macmillan Publishers Limited. All rights reserved.

Keyword

MEDICINE
MEDICIN

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • Nature (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view