SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:liu-86635"
 

Search: onr:"swepub:oai:DiVA.org:liu-86635" > The space of soluti...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The space of solution alternatives in the optimal lotsizing problem for general assembly systems applying MRP theory

Grubbström, Robert W (author)
Linköpings universitet,Produktionsekonomi,Tekniska högskolan
Tang, Ou (author)
Linköpings universitet,Produktionsekonomi,Tekniska högskolan
 (creator_code:org_t)
Elsevier, 2012
2012
English.
In: International Journal of Production Economics. - : Elsevier. - 0925-5273 .- 1873-7579. ; 140:2, s. 765-777
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the development of a theoretical background for multi-level, multi-stage production-inventory systems together with their economic evaluation, in particular applying the Net Present Value principle (NPV). less thanbrgreater than less thanbrgreater thanIn a recent paper (Grubbstrom et al., 2010), a general method for solving the dynamic lotsizing problem for a general assembly system was presented. It was shown there that the optimal production (completion) times had to be chosen from the set of times generated by the Lot-For-Lot (L4L) solution. Thereby, the problem could be stated in binary form by which the values of the binary decision variables represented either to make a production batch, or not, at each such time. Based on these potential times for production, the problem of maximising the Net Present Value or minimising the average cost could be solved, applying a single-item optimal dynamic lotsizing method, such as the Wagner-Whitin algorithm or the Triple Algorithm, combined with dynamic programming. less thanbrgreater than less thanbrgreater thanThis current paper follows up the former paper by investigating the complexity defined as the number of possible feasible solutions (production plans) to compare. We therefore investigate how properties of external demand timing and properties of requirements (Bill-of-Materials) have consequences on the size of this solution space. Explicit expressions are developed for how the total number of feasible production plans depends on numbers of external demand events on different levels for, in particular, the two extreme cases of a serial system and a full system (the latter, in which items have requirements of all existing types of subordinate items). A formula is also suggested for general systems falling in between these two extremes. For the most complex full system, it is shown that the number of feasible plans will be the product of elements taken from Sylvesters sequence (an instance of doubly exponential sequences) raised to powers depending on numbers of external demand events.

Keyword

MRP theory
Optimal lotsizing
Assembly system
Laplace transform
Complexity
TECHNOLOGY
TEKNIKVETENSKAP

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Grubbström, Robe ...
Tang, Ou
Articles in the publication
International Jo ...
By the university
Linköping University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view