SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:lnu-81673"
 

Search: onr:"swepub:oai:DiVA.org:lnu-81673" > Can anaerobic oxida...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?

Stranne, Christian (author)
Stockholms universitet,Institutionen för geologiska vetenskaper,Stockholm University, Sweden
O’Regan, Matt (author)
Stockholm University, Sweden
Jakobsson, Martin (author)
Stockholms universitet,Institutionen för geologiska vetenskaper,Stockholm University, Sweden
show more...
Brüchert, Volker (author)
Stockholms universitet,Institutionen för geologiska vetenskaper,Stockholm University, Sweden
Ketzer, João Marcelo (author)
Linnéuniversitetet,Institutionen för biologi och miljö (BOM)
O'Regan, Matthew (author)
Stockholms universitet,Institutionen för geologiska vetenskaper
show less...
 (creator_code:org_t)
2019-09-16
2019
English.
In: Solid Earth. - : Copernicus GmbH. - 1869-9510 .- 1869-9529. ; 10:5, s. 1541-1554
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic ox- idation of methane (AOM) within the sediments. Consider- ing that more than 90 % of the CH4 produced in ocean sed- iments today is consumed by AOM, this may result in sub- stantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid re- lease of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming sce- nario is simulated by imposing a linear seafloor temperature increase of 3 ◦C over the first 100 years. The results presented in this study should be seen as a first step towards under- standing AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficien- cies. Fracture flow is the predicted mode of methane trans- port under warming-induced dissociation of hydrates on up- per continental slopes. Therefore, in a future climate warm- ing scenario, AOM might not significantly reduce methane release from marine sediments. 

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences (hsv//eng)

Keyword

Natural Science
Naturvetenskap

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view