SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:lnu-90452"
 

Search: onr:"swepub:oai:DiVA.org:lnu-90452" > A sink-limited grow...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

A sink-limited growth model improves biomass estimation along boreal and alpine tree lines

Leuzinger, Sebastian (author)
Auckland Univ Technol, New Zealand;ETH, Switzerland;Univ Basel, Switzerland,School of Applied Sciences, Auckland University of Technology, Auckland, 1142, New Zealand
Manusch, Corina (author)
Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Forest Ecology, Universitätstrasse 16, Zurich, 8092, Switzerland
Bugmann, Harald (author)
Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Forest Ecology, Universitätstrasse 16, Zurich, 8092, Switzerland
show more...
Wolf, Annett (author)
ETH, Switzerland
show less...
 (creator_code:org_t)
2013-02-06
2013
English.
In: Global Ecology and Biogeography. - HOBOKEN 07030-5774, NJ USA : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 22:8, s. 924-932
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Aim Despite increasing evidence for plant growth often being limited by sink (meristem) activity rather than source (photosynthesis) activity, all currently available dynamic global vegetation models (DGVMs) simulate plant growth via source-limited processes. For a given climatic region, this may lead to an overestimation of carbon stock per unit surface area, particularly if a model fails to correctly predict forest cover. Our aim is to improve the Lund-Potsdam-Jena (LPJ) DGVM by replacing the source-limited (SoL) tree growth algorithm by a sink-limited (SiL) one. Location Our analysis focuses on the cold tree line at high latitudes and altitudes. We study two altitudinal transects in the Swiss Alps and the northern tree line. Methods We limit annual net primary productivity of the LPJ DGVM by an algorithm based on the annual sum of growing degree-days (GDD), assuming that maximum plant growth is reached asymptotically with increasing GDD. Results Comparing simulation results with observational data, we show that the locations of both the northern and the alpine tree line are estimated more accurately when using a SiL algorithm than when using the commonly employed SoL algorithm. Also, simulated carbon stocks decrease in a more realistic manner towards the tree line when the SiL algorithm is used. This has far-reaching implications for estimating and projecting present and future carbon stocks in temperature-limited ecosystems. Main conclusions In the range of 60-80 degrees N over Europe and Asia, carbon stored in vegetation is estimated to be c. 50% higher in the LPJ standard version (LPJ-SoL) compared with LPJ-SiL, resulting in a global difference in estimated biomass of 25 Pg (c. 5% of the global terrestrial standing biomass). Similarly, the simulated elevation of the upper tree line in the European Alps differs by c. 400 m between the two model versions, thus implying an additional overestimation of carbon stored in mountain forests around the world.

Subject headings

LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Skogsvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Forest Science (hsv//eng)
NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Klimatforskning (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Climate Research (hsv//eng)

Keyword

Carbon stock
DGVM
growing degree-day sum
LPJ
plant growth limitation
sink limitation
temperature limitation
tree line
Ecology
Ekologi
ekologisk botanik

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view