SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-39648"
 

Search: onr:"swepub:oai:DiVA.org:ltu-39648" > Modeling the format...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Modeling the formationkeeping control with multibody codes

Felicetti, Leonard (author)
Dipartimento di Ingegneria Astronautica Elettrica Ed Energetica (DIAEE)
Palmerini, Giovanni B. (author)
Sapienza Università di Roma, Dipartimento di Ingegneria Astronautica Elettrica Ed Energetica (DIAEE)
 (creator_code:org_t)
Piscataway, NJ : IEEE Communications Society, 2012
2012
English.
In: 2012 IEEE Aerospace Conference; Big Sky, MT. - Piscataway, NJ : IEEE Communications Society. - 9781457705564
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Formation Flying control involves the computation of relative kinematics and dynamics among a number of orbiting platforms. Formations are not the only space application in which several components operate coordinately at the same time. "Multibody" is the scheme usually adopted to model the robotic arms of the space manipulators or large space platforms as the International Space station, and multibody can be also seen as a set of components orbiting together. A number of software codes have been developed during the years to represent and simulate this scheme, taking into account the differential forces acting on each member. This paper proposes to build on this effort to test a different way for evaluating the control of spacecraft formations. The formation spacecraft will be represented by the joints of the multibody. The links, represented as structural element with infinite stiffness, virtually reproduce the relative constraints in position and attitude among the platforms. The idea is to consider the orientation and the length of the links such that the joints (spacecraft) will actually assume the relative geometry which is the desired state at a given time. The forces and torques to be provided to the real spacecraft belonging to the formation are related to the reaction torques and forces which are provided at the joints in the corresponding multibody representation. These reactions can be easily computed by available multibody codes, and the values found can be applied to a standard orbital propagator to compute the dynamical behavior and to validate the approach. The advantage stays with the quick, easy computation of the inverse kinematics, which is routinely performed by multibody software. The solution should be useful to both the cases of keeping an already acquired configuration, like large distributed antennas virtually built by several spacecraft, as well as to the rigid reorientation of a formation, like in some astronomical missions

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

Onboard space systems
Rymdtekniska system

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Felicetti, Leona ...
Palmerini, Giova ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Other Electrical ...
Articles in the publication
2012 IEEE Aerosp ...
By the university
Luleå University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view