SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-72729"
 

Search: onr:"swepub:oai:DiVA.org:ltu-72729" > Modelling of Bulk M...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Modelling of Bulk Metallic Glass formation in Powder Bed Fusion

Lindwall, Johan (author)
Luleå tekniska universitet,Material- och solidmekanik
Lundbäck, Andreas (thesis advisor)
Luleå tekniska universitet,Material- och solidmekanik
Unosson, Mattias (opponent)
Exmet AB, Kista, Svergie
 (creator_code:org_t)
ISBN 9789177903062
Luleå : Luleå University of Technology, 2019
English.
Series: Licentiate thesis / Luleå University of Technology, 1402-1757
  • Licentiate thesis (other academic/artistic)
Abstract Subject headings
Close  
  • This thesis discusses a model for simulation of the Powder Bed Fusion (PBF) process of metallic powder with the capability to become amorphous. The temperature field in the PBF process is predicted by a three-dimensional thermal finite element model in three dimensions using a layer-by-layer approach, meaning that the scanning strategy of the moving laser spot is consolidated into a single heat source acting on the entire layer momentarily. This temporal reduction enables simulations of large domains and many layers while it becomes less computational demanding compared to a detailed transient model that incorporates a scanning sequence. Predictions of the amorphous and crys- talline phase fractions are performed with a phase model coupled to the temperature field simulation. The phase model is based on differential scanning calorimetry measure- ments and optimized to fit continuous heating transformation into a crystalline state of an amorphous sample. The simulations are performed on the commercial available glass forming alloy AMZ4.Bulk Metallic Glass (BMG) have an amorphous structure and possesses desirable me- chanical, magnetic and corrosion properties such as high yield stress, low magnetic losses and high corrosion resistance. Glass forming alloy has the potential to become amorphous provided that the solidification rate is rapid enough to avoid crystallization. However, traditional manufacturing techniques, such as casting, limits the cooling rates and size of components due to limited heat conduction in the bulk. With Additive Manufacturing (AM) on the other hand, it is possible to produce BMG’s as the melt pool is very small and solidification can be achieved very rapid to bypass crystallization. Yet, crystals may form by devitrification (crystal formation upon heating of the amorphous phase) because of thermal cycling in previous layers. Simulation of the process will aid the understanding of glass formation during AM and the development of process parameters to control the level of devitrification.  

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Teknisk mekanik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Applied Mechanics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Keyword

Material Mechanics
Materialmekanik

Publication and Content Type

vet (subject category)
lic (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Lindwall, Johan
Lundbäck, Andrea ...
Unosson, Mattias
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Applied Mechanic ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
and Other Materials ...
Parts in the series
Licentiate thesi ...
By the university
Luleå University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view