SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:DiVA.org:ltu-78111"
 

Search: onr:"swepub:oai:DiVA.org:ltu-78111" > Numerical modeling ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Numerical modeling and verification of a sonobioreactor and its application on two model microorganisms

Najjarzadeh, Nasim (author)
Luleå tekniska universitet,Kemiteknik
Krige, Adolf (author)
Luleå tekniska universitet,Kemiteknik
Pamidi, Taraka Rama Krishna (author)
Luleå tekniska universitet,Drift, underhåll och akustik
show more...
Johansson, Örjan, 1963- (author)
Luleå tekniska universitet,Drift, underhåll och akustik
Enman, Josefine (author)
Luleå tekniska universitet,Kemiteknik
Matsakas, Leonidas (author)
Luleå tekniska universitet,Kemiteknik
Rova, Ulrika (author)
Luleå tekniska universitet,Kemiteknik
Christakopoulos, Paul (author)
Luleå tekniska universitet,Kemiteknik
show less...
 (creator_code:org_t)
2020-03-11
2020
English.
In: PLOS ONE. - : PLOS. - 1932-6203. ; 15:3
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ultrasound has many uses, such as in medical imaging, monitoring of crystallization, characterization of emulsions and suspensions, and disruption of cell membranes in the food industry. It can also affect microbial cells by promoting or slowing their growth and increasing the production of some metabolites. However, the exact mechanism explaining the effect of ultrasound has not been identified yet. Most equipment employed to study the effect of ultrasound on microorganisms has been designed for other applications and then only slightly modified. This results in limited control over ultrasound frequency and input power, or pressure distribution in the reactor. The present study aimed to obtain a well-defined reactor by simulating the pressure distribution of a sonobioreactor. Specifically, we optimized a sonotrode to match the bottle frequency and compared it to measured results to verify the accuracy of the simulation. The measured pressure distribution spectrum presented the same overall trend as the simulated spectrum. However, the peaks were much less intense, likely due to non-linear events such as the collapse of cavitation bubbles. To test the application of the sonobioreactor in biological systems, two biotechnologically interesting microorganisms were assessed: an electroactive bacterium, Geobacter sulfurreducens, and a lignocellulose-degrading fungus, Fusarium oxysporum. Sonication resulted in increased malate production by G. sulfurreducens, but no major effect on growth. In comparison, morphology and growth of F. oxysporum were more sensitive to ultrasound intensity. Despite considerable morphological changes at 4 W input power, the growth rate was not adversely affected; however, at 12 W, growth was nearly halted. The above findings indicate that the novel sonobioreactor provides an effective tool for studying the impact of ultrasound on microorganisms.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Bioprocessteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Bioprocess Technology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Keyword

Biokemisk processteknik
Biochemical Process Engineering
Teknisk akustik
Engineering Acoustics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • PLOS ONE (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view